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ABSTRACT

In the coupled-dipole method, an arbitrary particle is modeled as an

array of N polarizable subunits each of which gives rise to only electric dipole

radiation. The total scattering is calculated by summing the waves scattered by

each dipolar subunit excited by the incident wave and the waves of all the

other dipolar subunits. By accounting for the dipolar interactions, the accuracy

of the scattering calculations improves, but the mathematics become more

complicated. The matrix inversion and scattering-order techniques are used to

solve for the dipolar interactions.

The Clausius-Mosotti relation has been the most widely used effective-

medium theory to relate the polarizability of the dipolar subunits to the

refractive index of the bulk particle that the array represents. The

polarizability of the dipolar subunits has been calculated using the electric

dipole coefficient from Mie theory. This alternative expression for

polarizability leads to scattering calculations that better agree with Mie theory.

Of all scattering angles, backscattering is the most sensitive to small

changes in particle size and shape. The coupled-dipole method's ability and

limitations for calculating backscattering are demonstrated. For particles with

size parameter less than that associated with the first backscattering minimum,

the coupled-dipole method agrees favorably with Mie theory. For particles
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with larger size parameters the agreement decreases, but accuracy generally

improves by increasing the number of dipolar subunits in the array.

Backscattering of 94 GHz Doppler radar by raindrops can be used to

infer clear air velocity; backscattering by ice crystals may provide similar

information. Backscattering at 94 GHz by randomly oriented ice plates or

columns does not agree with backscattering by equal-volume ice spheres for

size parameters greater than 0.8. Backscattering depends on zenith angle for

ice crystals whose principle axes are confined to the horizontal plane. The

relationship between first backscattering minimum and size parameter varies

with particle shape and zenith angle. Backscattering of vertically polarized

light is more sensitive to the presence of ice columns while horizontally

polarized light is more sensitive to ice plates.
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Chapter 1

INTRODUCTION

Scattering and absorption of electromagnetic waves are due to the

heterogeneity of matter. All matter is composed of discrete charged particles.

When an electromagnetic wave excites a charged particle it oscillates; the

acceleration of the particle gives rise to electromagnetic energy radiated in all

directions. This radiation is called scattered radiation. If oscillation of the

particle is not in phase with the incident wave, some of the incoming energy is

absorbed.

Understanding this microscopic description of the scattering process is

not a prerequisite for all scattering calculations. For example, the laws of

specular reflection and of refraction were known empirically long before J. J.

Thompson demonstrated that atoms contain electrons. In these cases the

microscopic actions of charged particles can be described by empirically

derived macroscopic equations. Although these macroscopic solutions to

scattering problems are qualitatively simple to understand and use, they are

easiest to apply to simple geometries such as optically smooth planes.

Scattering by macroscopic particles can be calculated using macroscopic

equations. If the shape of a particle can be described by one of the coordinate

systems for which the technique of separation of variables can be exploited, an

analytic solution for scattering may be found. Solutions exist for spheres
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(Mie, 1908), infinite cylinders (Rayleigh, 1881), and spheroids (Asano and

Yamamoto, 1975). Logan (1965) provided an interesting historical account of

the solution for scattering by a sphere.

The task of calculating the scattering by an arbitrary particle becomes

more difficult; several numerical methods are available. The T-matrix method

is an integral formulation that obtains a solution by iteratively matching

boundary conditions of the internal and scattered fields of the particle. The

method was first developed by Waterman (1965) and later made less restrictive

by Waterman (1971). Barber and Yeh (1975) applied the T-matrix method to

scattering problems and renamed it the Extended Boundary Condition Method.

In the point-matching method (Oguchi, 1973) the fields inside and outside the

particle are calculated, and the tangential field components are required to be

continuous or matched across the boundary. Perturbation methods treat

nonspherical particles as spheres with a distorted boundary to estimate the

scattered field (Yeh, 1964). The Purcell-Pennypacker method (Purcell and

Pennypacker, 1973) solves the problem of scattering by an arbitrary particle by

representing the particle as an array of polarizable subunits. The total

scattered field is determined by summing the waves scattered by each dipolar

subunit (also referred to as dipoles) that is excited by the incident wave as well

as by the scattered waves of all the other dipoles.

In this dissertation, the Purcell-Pennypacker method is used. Recently,

it has appeared in print under several different names: the coupled-dipole
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approximation (Singham and Salzman, 1986); the digitized Green's function

(Goedecke and O'Brien, 1988); and the discrete dipole approximation (Draine,

1988). Hereinafter it will be referred to as the coupled-dipole method, a name

that better conveys the physical principles underlying the method.

Gray (1916), Kirkwood (1936), and Cassim and Taylor (1965)

considered the interaction of dipoles, i.e. coupled dipoles; however, Purcell and

Pennypacker were the first to include the interactions when calculating

absorption and scattering by optically homogeneous particles and to compare

the results with an analytic solution. Having a computer to perform the

mathematical calculations was an advantage that Purcell and Pennypacker had

over their predecessors, and the larger size and faster speed of today's

computers continue to attract scientists and engineers to the coupled-dipole

method. This is evident when examining the number of published papers

which include calculations by or modifications to the coupled-dipole method.

In the first few years following 1973, most articles citing Purcell and

Pennypacker contained simple applications of the method or only mentioned

its existence. The number of citations from 1974 to 1977 totaled seven; nearly

all were from articles published in astrophysical journals. Then, in an optics

journal, Yung (1978) published an iterative technique for solving the dipole

interactions. By exploiting the symmetry of a sphere and of the incident plane

wave, he was able to increase the number of dipolar subunits to over 15,000

from the several hundred used by Purcell and Pennypacker. Shortly after this,
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Chiappetta (1980) published another iterative solution that he referred to as a

multiple scattering technique. The advantage of this technique is a substantial

decrease of computer memory required to carry out the scattering calculations.

The number of citations of the original Purcell-Pennypacker paper grew to ten

from between 1978 and 1980; between 1981 and 1983 it decreased to three.

The popularity of them again increased through the mid-1980s. Astronomers

studying the characteristics of interstellar particulate matter (Wright, 1988;

Draine, 1988) were joined by scientists interested in scattering by chiral

particles and dielectric helices (e.g. Singham et al. 1986a; Chiappetta and

Torresani, 1988), agglomerated soot particles (Jones, 1979; Drolen and Tien,

1987), dielectric cubes (Kattawar et al., 1987), fractal dust grains (Wright,

1987), foreign objects on a flat surface (Taubenblatt, 1990), and ice crystals

(O'Brien and Goedecke, 1988; Flatau et al. 1988, 1990; Evans and

Vivekanandan, 1990; Vogelmann et al., 1990).

During the last few years several alternative solution techniques were

published. Singham et al. (1986b) showed how the scattering properties of

randomly oriented particles could be calculated quickly having first determined

the inverse of the interaction matrix. Singham and Bohren (1988) reexamined

the scattering-order technique, which was published earlier by Chiappetta

(1980). To reduce computational roundoff error, Draine (1988) added several

mathematical steps to the conjugate gradient technique for solving the

interaction matrix. He also described how the computation time could be
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reduced if the particle shape with respect to the incident plane wave was

symmetric. Flatau et aL. (1990) reported on the block-Toeplitz method for

inverting the interaction matrix.

Motivation

Cloud and precipitation remote sensing at 94 GHz has become possible

only recently by advances in microwave radar technology (Lhermitte, 1987).

The pulsed Doppler radar enables the meteorologist to observe the motion and

growth of small hydrometeors; this is not possible with radars that operate at

centimeter wavelengths. For certain rainfall events, the backscattered signal is

used for determining the clear air velocity (Lhermitte, 1988). Mie theory is

used to calculate backscattering by spherical raindrops; however, it is not

appropriate for calculating backscattering by nonspherical ice crystals. The

coupled-dipole method is used to show that minima occur in the backscattered

signal from ice crystals as a function of size parameter. As a result of the

nonsphericity of the ice crystals that were modeled, these minima appear at

different size parameters for different incident wave zenith angles. The

minima also depend on ice crystal shape. Thus, it may be possible to use

94 GHz radar backscattered signal to estimate the shape and size distribution

of ice crystals in the 1 to 4 mm size range. By decreasing the wavelength of
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the radar, information about smaller ice crystals would be available (Lhermitte,

1990).

Organization

Since Purcell and Pennypacker first published the coupled-dipole

method in 1973, its formulation has remained essentially unchanged. A

general description of the model is presented in Chapter 2. Recently, the

model has been extended to include particles of optically active material

(Singham; 1986) and anisotropic material (Varadan et al., 1989).

An integral part of the coupled-dipole method is the effective-medium

theory that provides the relationship between the polarizability of the dipolar

subunits and the refractive index of the particle the array represents. The

most widely used scheme for this is the Clausius-Mosotti relation. Draine

(1988) added a radiative reaction term which guarantees that the polarizability

will have an imaginary component even if the refractive index of the particle is

purely real. This was done to avoid violation of the optical theorem. A

complex polarizability can also be guaranteed by using the electric dipole term

from Mie theory (Doyle, 1988). Incorporation of this scheme in the coupled-

dipole method and consequent improvements in scattering calculations are

described in Chapter 3 and Appendix A.
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The coupled-dipole method provides values of the electric field

scattered by an arbitrary particle. Chapter 4 describes how the input data has

been manipulated to enhance the usefulness of the coupled-dipole method.

Derivations of equations for calculating observable scattering parameters from

the output data are also presented.

In remote sensing of the atmosphere, often only the backscattered signal

is readily available. Chapter 5 reports the advantages, disadvantages, and

limitations of using the couple-dipole method for determining backscattering by

arbitrary particles. In the final section, application of the coupled-dipole

method for determining the backscattered signal from ice crystals at 94 GHz

(3.2 mm) is discussed.
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Chapter 2

THE COUPLED-DIPOLE METHOD

The coupled-dipole nethod, which is based on a simple physical

description of how a particle scatters electromagnetic waves, has remained

essentially unchanged since it was published by Purcell and Pennypacker

(1973). Its formulation is based on representing an arbitrary particle by an

array of N dipolar subunits arranged on a lattice. The dipolar subunits are

sufficiently small to give rise to only electric dipole radiation. Total scattering

is then calculated by summing the electromagnetic waves scattered by each

dipolar subunit excited by the incident wave as well as the waves scattered to

it from all other dipolar subunits.

The coupled-dipole method can be thought of as an extension of the

Rayleigh-Gans theory. Whereas interactions among the dipolar subunits are

ignored in the Rayleigh-Gans theory, they form an integral part of the coupled-

dipole method. Including interactions improves the accuracy of scattering

calculations, but also necessitates solving a 3N x 3N complex matrix. Gray

(1916), Kirkwood (1936), and Cassim and Taylor (1965) published earlier

investigations similar to the coupled-dipole method; however, Purcell and

Pennypacker were apparently the first to apply the method to absorption and

scattering by optically homogeneous particles and compare the results with an

analytic solution.
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The key to the coupled-dipole method is the interaction of the dipolar

subunits. The following derivation of the electric dipole radiation field will

provide a better understanding of these interactions. The derivation is similar

to that by Jackson (1975, Chap 9); however, these equations are presented in

SI units. Once the interactions are known, the solution may be obtained by

direct inversion of the 3N x 3N matrix or by numerical iteration. Several

options are discussed in this chapter.

Formulation of the Dipole Interaction Equation

The vector potential A is a function of the current density J in the

system:

P0 f ioIEr1 (2.1)47cIXo~-.r I

where N is the permeability of the material, ko is the free space wavenumber

given by k = 27r/x 0, xo is the free space wavelength, and xP and x are the

locations of the charge and where the field is being evaluated, respectively. A

sinusoidal time dependence exp{-iwt} of the current is assumed. Rapid spatial

oscillation of the electromagnetic field allows the following approximation for

the argument of the exponential term
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[Z-V' - r-n',x' (2.2)

where r = Fti and n is a unit vector in the direction of x. For the far

(radiation) zone the distance from the charge to the detector in the

denominator may be replaced by r only. When the source dimensions d are

small compared with the wavelength, exp{-ik on.' } may be expanded in

powers of k. For electric dipole radiation only the first term of this expansion

is kept, which simplifies the vector potential to

Oeikor d 3x' (2.3)
A 4,xtr -ff@*1 d

Thus, the vector potential behaves like an outgoing spherical wave with a r"1

dependence. In fact, equation 2.3 is valid everywhere outside the source

(Jackson, 1975, Sect 9.2). The only limiting assumption so far is d ,4 \0.

Equation 2.3 can be further manipulated using integration by parts and

by applying the continuity equation for current density. The vector potential

becomes

-ip.. eikor

-i Loko . e(2.4)

4inc r

where p is the electric dipole moment and c is the speed of light in vacuo.

The magnetic induction is given by: B = v x A; while outside the source the

electric field is E = ic v x B. The electric field E is now calculated
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k (i xpxi er+ [3fi(ri4p)-/'] (1 ip-) )ieikor (2.5)

41 or 47o r 3  r 2

Each dipolar subunit has a dipole moment given by

f. - (2.6)

where a is the polarizability of the dipole. Equations 2.5 and 2.6 are now

combined to form a system of 3N equations; the resulting 3N x 3N matrix is

referred to as the interaction matrix. With N dipolar subunits, the exciting

field Ej at the ith dipole due to the incident radiation and the scattered

radiation from the other dipolar subunits is:

N

j~i

where

ikkq kb 3i2oa~ . .ter~(° + ~- 0 ~ 3aj- 2ko,3 (2.8)

E0 is the incident field, and r,, = 13i - 3I is the distance from the ith to the

jth dipolar subunit. The polarizability a can be a complex tensor (Post, 1962),

but here it is a scalar since only isotropic scatterers will be represented by

arrays of spherical dipoles. The solution to equation 2.7 yields the resultant

electric field at each dipole location with retardation taken fully into account.

The only limitation thus far is that the diameter of the dipolar subunits

must be small enough compared with the wavelength. Since the dipolar
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subunits are arranged on a simple cubic lattice and are touching (not

penetrating) their neighbors, the dipolar subunit diameter may be taken to be

the same as the lattice spacing. Therefore, the lattice spacing must also be

smaller than the wavelength. This is equivalent to the restriction required

when simplifying equation 2.3, i.e. d ,4 x. Purcell and Pennypacker (1973)

expected good results when kod - 0.7. From the method-of-moments

literature the grid spacing should not exceed one-tenth of the wavelength

(kod - 0.6) (Massoudi et al., 1984). Yung (1978) placed a tighter restriction on

the spacing, kd < 0.33, citing the necessity for smaller phase difference of the

incident wave between neighboring dipolar subunits. Recently, Draine (1988)

considered the wavelength within the dipolar subunit and included the complex

refractive index m of the material. To achieve 10% accuracy (based on a

zero-frequency limit) his calculations suggested k0d I ml < 1. Table A.1

(page 111) contains examples of how the accuracy of scattering calculations

using the coupled-dipole method generally decreases as k0dIm I increases.

The derivation of the coupled-dipole method as described above is a

heuristic approach founded on physical principles. A derivation of the method

based on volume integrals using the free space Green's functions has been

given by Lakhtakia (1990). The results of both derivations are identical, and

the user is left to chose from several techniques to solve the overall scattering

problem. Several techniques are described in the following section.
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Solution Techniques

Equation 2.7 forms the basis of the coupled-dipole method by describing

the electric dipole field radiated by each dipolar subunit. The task is to solve

the 3N linear algebraic equations to yield the resultant field at all subunits.

Several solution techniques are available, and most are standard matrix

solution procedures. Purcell and Pennypacker (1973) used an iterative

technique of successive substitution; Yung (1978) was the first to use the

conjugate gradient technique for solving these simultaneous algebraic

equations; Singham et al. (1986b) inverted the interaction matrix; Chiapetta

(1980) and Singham and Bohren (1988) used an iterative technique known as

the scattering-order technique; and Flatau et al. (1990) exploited the block-

Toeplitz structure of the interaction matrix for rectangular particles. The two

solution techniques of interest here are the matrix inversion and scattering-

order. The advantages and disadvantages of these and some other techniques

are now discussed.

Matrix Inversion Technique

The system of simultaneous equations arising from equation 2.7 may be

expressed in the form A = XB, where X is the 3N x 3N interaction matrix, A

-- ) ,
is the 3N x 1 vector containing the incident electric field components E0(ri),
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and B is the 3N x 1 vector containing the unknown exciting field components

E,. The matrix inversion technique solves for B by inverting the interaction

matrix: X 1A = B. By the physical nature of the problem an inverse exists,

but since the matrix inversion technique is a computer-oriented routine, the

inverse is obtained only if the matrix is algorithmically nonsingular. As will be

discussed later, this technique offers an advantage because iterative techniques

rely on mathematical series that do not always converge or converge quickly.

The inverse is obtained using LINPACK' subroutines CGECO and CGEDI.

Another advantage of the matrix inversion technique is that the

scattered field for the particle in different orientations can be calculated

quickly (Singham et al., 1986b). When the coordinate system describing the

particle remains fixed, the interaction matrix and its inverse remain the same.

Thus, simulation of particle rotation is accomplished by rotating the incident

field in the opposite sense.

The disadvantage of the matrix inversion technique is that it is very

computer intensive in terms of storage requirements and computation time.

For a particle represented by an array of N dipolar subunits, the 3N x 3N

complex interaction matrix must be stored. Compiling the program in single

precision (COMPLEX * 8 on an IBM ES/3090-600) for a 250 dipolar array

requires approximately 8.0 megabytes of memory. When the program is

'UNPACK is a nonproprietary collection of subroutines amassed by the
National Bureau of Standards and available at many computer facilities.
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compiled in double precision rather than single precision, the scattering

calculations differ by less than one percent for spheres with refractive indices

between 1 and 2 and size parameters between 0.5 and 2.0. Thus, additional

memory burden is avoided by not declaring the variables as COMPLEX * 16.

This is not a general recommendation for not using double precision because,

if the dipolar subunits are made very small compared with the incident

wavelength and the incident field at adjacent dipolar subunits are nearly equal,

error accumulation due to Ei - E,,1 may require double precision. Since

executable memory size increases as N2, this matrix solution technique cannot

be used with small computers.

This solution technique may not be acceptable if CPU time is a limiting

factor. The inverse matrix is determined by Gaussian elimination which,

although a direct method of solution, is the slowest numerical method.

Computer run time to invert a matrix associated with a 160-dipole array takes

approximately 1 minute on an IBM ES/3090-600, which has a clock speed of

15 ns (six processors rated at about 65 MIPS). Since computation time is

proportional to N3, increasing the array to 600 dipoles will increase

computation time to nearly one hour. However, this technique may be

attractive if the scattering response is to be calculated for multiple orientations

of the particle.
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Scattering-Order Technique

The second solution technique of interest is the scattering-order

technique. This approach was first described by Chiapetta (1980) and

independently reexamined by Singham and Bohren (1988). The advantage of

using the scattering-order technique is that the interaction matrix is not

required and a much larger dipolar array can be used. The scattering-order

technique is based on internal scattering orders among the dipolar subunits.

The following is a brief description of the scattering-order technique.

For the collection of N dipolar subunits the scattering-order technique

still relies on equation 2.7, which uses the incident field and dipole interaction

to calculate the electric field at each dipole; however, it can be rewritten as:

C - .EE c. (2.9)
i *

where the matrix C~i is a function of aq., bij, a, and ni-.. Equation 2.9 can be

expressed as an infinite series in powers of Ci,

- o, E c,-o E C,.c .o
i *j izj j*k

+ C. -k" C .E0 + (2.10)
ij jok kom

Equation 2.10 is equivalent to a Born expansion for scattering and is described

as a multiple scattering solution in the following fashion. The incident wave



17

hits the particle and excites the dipoles (0th scattering order or the first term

on the right side of equation 2.10). The dipolar subunits then radiate to their

neighbors for the first scattering order (second term of equation 2.10). The

new field is calculated at each dipole location and the next scattering order is

calculated--and so on until the series converges. This process can be carried

out efficiently by recognizing that each higher order field may be obtained by

using the results of the previous scattering order:

+(O + +)-(2)

E- E" + L C..o +) C' )+LC,'_ +"'" (2.11)
i~j i~j i,]

where E ) = E C 'Ej"-), k = 1, 2, 3, . Hence, each scattering order can

be calculated using the previously determined fields and interaction matrix.

The scattered field is obtained by summing consecutively higher-order terms in

the expansion until convergence is achieved. In this technique the field at each

dipole is completely replaced for each scattering order. This reduces computer

storage requirements since only a few small arrays are needed to calculate

subsequent terms in the series; therefore, storage of the large 3N x 3N

interaction matrix is no longer necessary.

The disadvantage of the scattering-order technique is that convergence

is not guaranteed. If the field amplitude at a dipole becomes greater than the

incident field, successive orders may continue to increase and the series

ultimately diverges (Singham and Bohren, 1988). The divergent behavior of

the series depends on the particle's shape, size, and relative refractive index.
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Convergence is more likely for elongated shapes, smaller size parameters, and

relative refractive indices that are not much different from unity. For

example, the series diverges for a sphere with a relative refractive index of

1.33 + iO.0 when the size parameter exceeds about 3, and for a relative

refractive index of 1.9 + iO.0, divergence is observed at a size parameter of

1.7. This places a restriction on the particles that can be studied using the

scattering-order technique.

When the series converges with little or no oscillation, the scattering-

order technique is relatively fast. For a 160-dipole array, one iteration takes

approximately 1 CPU second on an IBM ES/3090-600. Thus, if this series

converges in less than 60 iterations the scattering-order technique would be

more attractive than matrix inversion. By comparison the matrix inversion

technique takes about 60 seconds to solve a 160-dipole array. Table 2.1 lists

the number of terms in the series required to achieve convergence when

modeling arrays of dipoles that represent a sphere with a refractive index of

1.9 + iO.0. The f-onvergence criterion is satisfied when three consecutive

values of the calculated exciting field differ by less than an amount specified

by the user. A tolerance value of 0.1% appears sufficient. However, this does

not guarantee that the series has converged. It is also best to perform the

convergence test on the backscattered field since convergence is slowest in the

backward direction. Computation time for the scattering-order technique

varies as N2. Thus, for larger arrays this technique may be more appealing
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Table 2.1 An example of how the number of scattering orders necessary for
series convergence increases with size parameter. The series is
considered to have converged when three successive values of
the backscattered field differ by less than 0.1%.

Size Parameter Number of Dipoles Time per Number of
iteration (sec) terms in series

0.7 461 9 7

1.2 1064 18 19

1.4 1357 23 24

1.6 1791 30 50
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than the matrix inversion technique except when multiple orientations of the

particle are required.

Other Techniques

Two other techniques to solve the interaction matrix are the conjugate

gradient and the block-Toeplitz techniques.

Yung (1978) was the first to adapt the conjugate gradient algorithm for

the coupled-dipole method. This is a nonlinear iterative technique that will

reach a solution in 3N steps, but because the algorithm approaches the solution

quickly, the series can be terminated early if a small error is acceptable

(Strang, 1986, Chap 5). Computer time for an iteration is proportional to

N2logN. Like the scattering-order technique, the series within the conjugate

gradient technique will not always converge.

Draine (1988) used the conjugate gradient technique to calculate

scattering by particles with fourfold symmetry. Exploiting this symmetry will

reduce computing time by an order of magnitude or more and ease storage

requirements by about 40%. Unfortunately, not all particles have this

symmetry, and even when they do, this computational short-cut is limited to

only a few particle orientations.

Flatau et al. (1990) introduced the block-Toeplitz technique into the

coupled-dipole method. This technique exploits symmetries of the interaction
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matrix when the dipole array represents a cube or parallelepiped. Minimal

storage requirements are the strong point of the block-Toeplitz technique, and

while it is much faster than the matrix inversion technique, it is slightly slower

than the conjugate gradient technique.

All matrix solution techniques have advantages that make one more

attractive than another depending on the application. In this dissertation the

matrix inversion and scattering-order techniques were chosen for particular

purposes. The matrix inversion technique is used in Chapter 3 for testing a

new method for determining the polarizability of the dipolar subunits. It is

used again in Chapter 5 for calculating scattering by particles in multiple

orientations. The scattering-order technique is also used in Chapter 5 to

calculate scattering by particles that are represented by arrays too large for the

matrix inversion technique.
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Chapter 3

DOYLE'S METHOD FOR CALCULATION OF POLARIZABILITY

Purcell and Pennypacker (1973) formulated the coupled-dipole method

to study scattering by arbitrary particles at non-zero frequencies. The arbitrary

particle is represented by an array of polarizable subunits arranged on a simple

cubic lattice. To solve the scattering problem one must choose a technique to

solve the system of linear equations and also determine how to represent the

polarizable subunits. Several solution techniques were discussed in Chapter 2;

in this chapter a scheme to determine the electric-dipole polarizability of the

dipolar subunits is described.

Splitting the homogeneous scatterer into smaller objects alters its

electromagnetic description. To relate the discrete and continuous aspects of

the particle, Purcell and Pennypacker used the Clausius-Mosotti (CM) relation.

Like every effective-medium theory the CM relation is approximate, but it has

been used by nearly all adherents of the coupled-dipole method. Here, based

on work by Doyle (1989), an alternative method for calculating polarizability is

presented.

No material is homogeneous in the absolute sense. A medium which is

perceived as homogeneous is actually comprised of heterogeneities, i.e. charged

particles. As long as the heterogeneities (referred to hereinafter as grains) are

much smaller than the wavelength, the behavior of an electromagnetic wave
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passing through such a medium can be d:scribed statistically by estimating the

bulk optical property of the particle using an effective-medium theory (Bohren

and Wickramasinghe, 1977). An effective-medium theory requires knowledge

of the volume fraction of the embedded grains and the optical properties of

the grains and the surrounding matrix.

When the grains are composed of many molecules, the material can be

characterized by an effective dielectric function using the Maxwell Garnett

(MG) theory (Maxwell Garnett, 1904; Bohren and Huffman, 1983, Sect 8.5):

(1-f)em+fPC (3.1)
ay 1-f+ffP

where e, E, and Em are the dielectric functions of the bulk medium, grains,

and surrounding matrix, B is a function of grain shape, and f is the volume

filling factor of the grains. If the grains are spherical, B = 3Em/(E+ E), and

equation 3.1 can be rewritten as

- e 1+ 3 + 2 e, (3.2)

Spheroidal dipolar subunits have been described in other applications of the

coupled-dipole method (Singham, 1986). In the case of the coupled-dipole

method, the dielectric function of the particle Ea and the matrix Em are known
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and the dielectric function of the grains E must be determined. Rearrangement

of equation 3.2 yields

2(1 _f)8, _ (2 +f)e p a, (33)

(1-fecv- (1 + 2f)e

This form of the MG theory will be mentioned later in the chapter.

When the grains are too small to be assigned a dielectric function, the

Clausius-Mosotti (CM) relation (also known as the Lorentz-Lorenz equation)

may be used to determine the polarizability a of the grains

3(e - e.) 3(m 2 - 1) (3.4)
N(e ,+ 2c,) N(m 2 +2)

where N is the number density of the grains per unit volume (N cc f'), and m is

the complex relative refractive index. Even though the MG theory and CM

relation give different physical properties, they are very similar. Barker (1973)

published a derivation of the MG equation that is formally equivalent to the

derivation of the CM relation.

In the coupled-dipole method the grains are the dipolar subunits. The

means to estimate the dielectric function or the polarizability of the subunits

are given in equations 3.3 and 3.4. The relationship between E and a of the

dipolar subunits is obtained by combining these equations to produce another

form of the Clausius-Mosotti relation:
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a - 47ra 3 (P-em) (35)
(e +2e m)

where a is radius of the dipolar subunit. This brief discussion of effective-

medium theory provides a basis for introducing Doyle's method for calculating

the electric dipole polarizability of the dipolar subunits.

For a sphere in the longwave limit (x .4 1, I mix 1, where x is the size

parameter: x = 2'ra/ 0, with a being the radius and x0 the wavelength of

electromagnetic radiation in free space) the scattering amplitude S, is given by

(Bohren and Huffman, 1983, Sect 5.2)

$= -ikV (3.6)
4 it

Since the sphere is in the Rayleigh regime for scattering, the scattering

amplitude can be expressed as S = (3/2)a,, where a, is the electric dipole

coefficient from Mie theory. Thus, the polarizability can be written in terms of

the electric dipole coefficient

(z - -6a (3.7)

Since interactions between the dipolar subunits in the coupled-dipole method

are due to electric dipole radiation, this expression may be appropriate for

calculating the polarizability of the subunits. Equation 3.7 does not differ from
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equation 3.5 in the zero frequency limit. If a, is expanded in terms of the size

parameter x and the series truncated after the first term, then equation 3.7 is

identical to equation 3.5.

Doyle (1989) used equation 3.7 for determining the reflectance of a

composite of silver spheres in a transparent medium and obtained calculated

values that agreed better with experimental values than if only the first term in

the series had been used. The task now is to use this expression in the

coupled-dipole method and see if it improves scattering calculations.

From this point on the calculation of the electric dipole polarizability

using a, will be known as Doyle's method; equation 3.7 will be referred to as

Doyle's expression. The value for a1, the electric dipole coefficient, is given

by:

,(- MX)*- Ij(x)i(mx) (3.8)

m*1(mx)&I - & l(x)ql(mx)

where 0 and are the Ricatti-Bessel functions given by:

tx ) sin(x) co~) *~) -sim(x) _os___1(X) c ),i() + +sin(x) (3.9)

x X2  X

and
e ix i ix

- - , -E - ie (3.10)
X X2 X
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Thus, Doyle's expression gives the exact value for the electric dipole

polarizability.

Most applications of the coupled-dipole method use the CM relation as

it appears in equation 3.4. In this form only the dielectric functions of the bulk

particle and the surrounding medium are required. To use Doyle's method,

the complex refractive index m of the dipolar subunits must be determined for

equation 3.8 using equation 3.3 where m = (E/E.).

Scattering calculations using Doyle's expression to calculate

polarizability in the coupled-dipole method are discussed in Appendix A

beginning on page 104. The results are compared with two other methods for

calculating the polarizabilities: the CM relation and an expression published

by Draine (1988). Draine introduced a radiative reaction term to the CM

relation which guarantees an a non-zero imaginary part 3f the polarizability to

account for attenuation when the refractive index of the material is real. The

solutions using these three methods were compared with Mie theory (Bohren

and Huffman, 1983, Appendix A). In all cases scattering calculations using

Doyle's expression agreed with Mie theory better than when using the CM

relation or Draine's radiative reaction term.

Another test for Doyle's expression occurs at a Fr6hlich frequency.

This is an absorption mode where the relative complex dielectric function

approaches -2: E/ Em --, -2 + iO. At the Fr6hlich frequency the CM relation

yields an unbounded polarizability while Doyle's expression remains bounded.
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A Fr6hlich frequency occurs for quartz in the infrared part of the

electromagnetic spectrum. Scattering calculations using the coupled-dipole

method with Doyle's method were shown to agree favorably with measured

data. A detailed discussion and results of using Doyle's expression at a

Fr6hlich frequency is found in Appendix A beginning on page 112.
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Chapter 4

SCATERING CALCULATIONS USING

THE COUPLED-DIPOLE METHOD

The description of the coupled-dipole method in Chapters 2 and 3 has

been focused on its formulation, solution techniques for determining dipolar

interactions, and a new scheme for determining the polarizability of the dipolar

subunits. This chapter contains information on how the input data can be

manipulated to enhance the usefulness of the program and includes derivations

of some of the observable scattering parameters that are calculated by the

program. A version of the coupled-dipole method computer program was

obtained from Singham, and the modifications described in this chapter were

made to serve the needs of the research presented here and in the future.

Particle Shape

An advantage of the coupled-dipole method over other methods used to

calculate scattering by nonspherical particles is that a particle of any shape can

be modeled. In the coupled-dipole method a particle is represented by an

array of subunits located on a cubic lattice. However, caution is required

when constructing the array or choosing the coarseness of the lattice spacing.

For example, consider an array of eight dipolar subunits (hereinafter referred
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to as dipoles) situated on the vertices of a cube centered about the origin.

This simple array represents a cube; however, as will be described soon, it

could also represent a sphere constructed of all the dipoles within J3/2 units of

the origin. This ambiguity of shape must be minimized when building arrays

of dipoles. Another example of poor particle representation is the depiction of

a cylinder as a single string of dipoles. This configuration lacks adequate cross

sectional area and no sagittal dipole interaction necessary to represent the

cross section. Subroutines for several particle shapes are available in the

coupled-dipole method; they are briefly described here, and their listings are

found in Appendix B.

The unit of length used to describe the particle dimensions in this

dissertation is the lattice space (Is). One lattice space is the distance from the

center of one dipole to the center of an adjacent dipole. For determining the

equivalent volume of a dipolar array, one dipole is considered to have unit

volume.

Subroutine SPHERE builds a dipolar array to represent a spherical

particle in the following manner. To model a sphere of radius a, the

subroutine builds a cube with sides 2a, centered at the origin. All lattice points

within the cube that fall within a distance of the origin are included in the

array. The position of the origin with respect to the lattice is optional;

however, two logical choices exist. The origin can be centered on one dipole

which will be referred to as the central dipole (0.0, 0.0, 0.0), or the origin can
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lie in the midst of a core of eight dipoles that are offset by one-half dipole

diameter into respective octants of the coordinate system (__0.5, ±0.5, ±_0.5).

Many published papers use only the latter option, which reduces the number of

arrays that can be used to represent a sphere. A sphere of each type is shown

in Figure 4.1. The top array represents a sphere with the origin centered on a

dipole and contains 251 dipoles. It is constructed by choosing a radius of 3.8 ls

and has an effective radius of 3.91 Is. The bottom sphere has the origin

centered in a core of eight dipoles and contains 304 dipoles. It is constructed

by choosing a radius of 4.1 Is and has an effective radius of 4.17 Is. More will

be said about the effective radius of particles in the section describing particle

size, which begins on page 38. Scattering by a sphere calculated by the

coupled-dipole method has been shown to compare favorably with Mie theory

(e.g., Yung, 1978; Singham and Bohren, 1988).

Subroutine SPHEROID is similar to subroutine SPHERE except that

criteria for including dipoles in the array are based on the principal radii of a

spheroid. The subroutine is set up to build a prolate (oblate) spheroid with its

major (minor) axis in the z-direction. The spheroid is automatically centered

around the origin; thus the central dipole may or may not be located at the

origin depending on whether the major and minor radii are represented by an

odd or even number of dipoles. For this reason subroutine SPHERE is a

separate entity and not a special case within subroutine SPHEROID.

Examples of spheroids are shown in Figure 4.2. The top array represents a
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Figure 4.1 Arrays of dipoles arranged to represent spheres. The top array
contains 251 dipoles and has an effective radius of 3.91 Is; the
bottom array contains 304 dipoles and has an effective radius of
4.17 Is.
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Figure 4.2 Arrays of dipoles arranged to represent spheroids. The top array
contains 290 dipoles and represents a 2 x 1 oblate spheroid; the
bottom array contains 128 dipoles and represents a 2 x 1 prolate
spheroid.
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2 x 1 oblate spheroid, contains 290 dipoles, and has an equivalent spherical

radius of 4.11 Is. The bottom array represents a 2.x 1 prolate spheroid,

contains 128 dipoles, and has an equivalent spherical radius of 3.21 Is. Unlike

a sphere, scattering by spheroids and other particle shapes that will be

discussed is orientationally dependent. Scattering by spheroids using the

coupled-dipole method has been shown to compare favorably with the T-

matrix method at low frequencies and low refractive indices (Goedecke and

O'Brien, 1988).

The subroutine RECTSLD builds a dipolar array that represents a

rectangular solid. The user specifies the x-, y-, and z-dimensions, and the

subroutine centers the particle around the origin. This subroutine was written

to compare results published by Purcell and Pennypacker (1973). The block-

Toeplitz technique for solving the interaction matrix equation specifically

handles particles of this shape (Flatau et al., 1990). Unfortunately, few

applications in meteorology require knowledge of scattering by rectangular

particles. An example of this type of particle is shown in the top part of

Figure 4.3. The array is constructed with x-, y-, and z-dimensions of 4, 4, and

10, and contains 160 dipoles.

Subroutine CYLNDER constructs a cylinder with its longitudinal axis in

the x direction. Input parameters for assembling the array include the length,

the radius of the circular cross section, and whether the center dipole of the

cross section is located on the x-axis (x, 0.0, 0.0) or if four dipoles are
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Figure 4.3 Arrays of dipoles arranged to represent a rectangular solid and a
cylinder. The top array contains 160 dipoles and represents a
4 x 4 x 10 rectangular solid; the bottom array contains 240 dipoles
and represents a cylinder with a cross-sectional radius of 2.9 Is
and a length of 10 Is.
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centered around the x-axis [(x, __0.5, _+0.5) similar to the offset option in

SPHERE]. An example of a cylindrical particle is shown in the bottom half of

Figure 4.3. The array is constructed by choosing a cross-sectional radius of

2.9 Is, has a length of 10 Is, contains 240 dipoles, and has an effective circular

cross-section radius of 3.04 Is. Scattering by a finite cylinder was compared

with the results of an analytic solution for infinite cylinders, BHCYL (Bohren

and Huffman, 1983, Appendix C). Approximations based on Fraunhofer

diffraction theory indicate that cylinders with an aspect ratio greater than 10:1

may be regarded as effectively infinite (Bohren and Huffman, 1983,

Sect 8.4.7). For such a cylinder, scattering calculations using the coupled-

dipole method and BHCYL are in good agreement. For example, values of

extinction efficiency per unit length for cylinders with a refractive index of

1.33 + iO.4 are within 2%.

Subroutine FCC builds a sphere similar to SPHERE except that the

dipoles are placed on a face-centered cubic lattice rather than simple cubic.

The creation of FCC was to test a different dipole spacing scheme. Since a

face-centered cubic lattice has 12 nearest neighbors rather than only 6 as with

the simple cubic, and it has a packing fraction higher by a factor of /2 (Kittel,

1976), it was thought that a better representation of a sphere could be

achieved with little effort. The disadvantage of this structure would be that

with an increased number of dipoles, more computer storage and computing

time is required to solve the interaction matrix for an equal-sized sphere.
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Another concern with this structure is that mathematical approximations that

hold for the simple cubic lattice may not be valid for the face-centered cubic

lattice. Lorentz showed that for atoms on a simple cubic lattice the electric

field resulting from the contributions of the nearest dipoles (E,,) vanishes at

any lattice site (Jackson, 1975, Section 4.5). Although face-centered cubic is

not equivalent to simple cubic, the structure may be symmetric enough to

assume E. - 0. If this approximation were not valid the CM relation (and

Doyle's expression) would need to be reformulated. Scattering calculations

were made using SPHERE and FCC and were compared with results from

Mie theory. Since SPHERE compared more favorably with Mie than FCC it

appears that the approximation Ear = 0 may not be valid.

Subroutine HEXAGON constructs a hexagon crystal with its

longitudinal axis lying in the x direction and two vertices aligned with the z

axis. Depending on the input parameters, the array can represent either a

hexagonal plate or column. Because the array is positioned on a simple cubic

lattice, a regular hexagon is difficult to construct. Instead of 1200 angles, the

hexagon is constructed with 900 and 1350 angles, and the cross-section

dimensions are chosen to best represent an equilateral polygon. Figure 4.4

contains two examples of hexagonal particles. The top figure is a column and

has an effective cross-sectional diameter of 5.98 Is, a length of 12 ls or an

aspect ratio of about 2 x 1, and contains 336 dipoles. The bottom figure is a
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Figure 4.4 Arrays of dipoles arranged to represent hexagonal crystals. The
top array contains 336 dipoles and represents a 2 x 1 hexagonal
column; the bottom array contains 212 dipoles and represents a
2 x I hexagonal plate.
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plate and has an effective cross-sectional diameter of 8.21 Is, a depth of 4 Is or

an aspect ratio of about 2x 1, and contains 212 dipoles.

Paricle Size

The subroutines described in the previous section can be used to

construct arrays of dipoles that represent particles of various shapes.

However, as a result of the discrete nature of the dipoles, only a discrete set of

particle sizes can be represented unless additional modifications are made.

The modifications to vary the particle size are based on either the effective

radius or volume of particle that the array represents. If a particle of given

size is to be modeled, the subroutines adjust the radii of the dipoles

accordingly. The following exemplifies these modifications.

If SPHERE were used to build a particle of radius 3.0 Is with the origin

at a central dipole, the resulting dipolar array would contain all the dipoles

within 3.0 Is of the origin and consist of 123 dipoles. The volume of the

scatterer is then N, the number of dipoles. The effective radius of the particle

is given by
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(3N ~ (4.1)ae 1,I- "

In this case a. = 3.09 Is. If the input parameter for radius had been 3.1 Is, the

subroutine would have built the same 123-dipolar array. The next largest array

would not occur until the input radius reached 3.2 Is which would result in an

array of 147 dipoles; the effective radius for this sphere is 3.27 Is. Thus, a

particle of radius between 3.09 and 3.27 Is cannot be built without further

modifications to the subroutine. One modification has already been discussed:

the option for repositioning the origin with respect to the lattice points. This

option approximately doubles the number of arrays that can represent a

sphere, but overall selection remains limited. Table 4.1 contains the complete

list of spheres (of radius 3.0 _< a < 4.5) that can be represented using the

SPHERE subroutine. The list contains information on arrays that have the

origin at a central dipole or within a group of eight dipoles. It is observed in

Table 4.1 that a spherical particle with an effective radius of 3.25 Is cannot be

built. The following modification eliminates this restriction.

When a particle of specific size is required, the user is required to input

the actual dimensions and the radius of the dipole is adjusted so the effective

radius matches the desired value. For instance, if a sphere with an effective

radius of 3.25 Is is to be modelled, the sphere containing 147 dipoles may be

used, but the dipole radius will be reduced to 0.48 Is from 0.50 Is. The size of
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Table 4.1 Physical characteristics of dipolar arrays that are
constructed by subroutine SPHERE. Radius is the input
parameter, eff rad is the effective radius based on
equivalent volume sphere, and N is the number of dipoles
in the array.

Origin not at a central dipole Origin at a central dipole

Radius Eff Rad N Radius Eff Rad N

3.0 3.19 136 3.0 3.09 123

3.3 3.37 160 3.2 3.27 147

3.6 3.68 208 3.5 3.50 179

3.9 4.06 280 3.8 3.91 251

4.1 4.17 304 4.2 4.18 305

4.4 4.41 360 4.3 4.33 341
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a spheroid is adjusted based on the radius of an equivalent sphere

(equation 4.1). For a cylinder and hexagon the modification depends on the

effective cross-sectional radius:

ae = (N (4.2)

In this manner particles of any size can be represented.

This ability to change the size of the dipoles is also important because

backscattered radiation is highly dependent on particle shape. When more

dipoles are used to represent a particle, the array becomes a truer

representation of that particle. As will be discussed in Chapter 5,

backscattering calculations can be improved by modelling particles with larger

arrays of smaller dipoles.

Scattering Matrices

Two related matrices are encountered when calculating scattering of

polarized light by a particle: the amplitude scattering matrix and the Mueller

matrix. The amplitude scattering matrix provides the relation between the

incident and scattered electric fields. The Mueller matrix is an expansion of

the amplitude scattering matrix using a set of observable properties of
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polarized light which are referred to as the Stokes vectors. Both matrices are

calculated in the coupled-dipole method.

From this point on light will refer to plane wave radiation propagating

in the +z direction. Polarization in the context of polarized light is not to be

confused with the polarizability of the dipolar subunits. The state of

polarization describes the behavior of the electric field in the x-y plane as the

wave propagates in the z direction. For example, parallel linearly polarized

light refers to a linearly polarized plane wave whose electric field remains

parallel to some arbitrary axis. Conventions for defining polarized light are

not standard; the convention adopted here is that used by Bohren and

Huffman (1983, Chap 2.11).

Singham et al. (1986a) analyzed the scattered light in terms of left- and

right-circularly polarized light. The equations necessary to evaluate parallel

and perpendicular linearly polarized light have been added to the coupled-

dipole method; the derivation of these equations used to calculate the

amplitude scattering matrix is now described.

The amplitude scattering matrix relates the parallel and perpendicular

components of the incident (i) and scattered (s) electric fields
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(E2s -ikr S 4 S1J E±Ji)

where Sj(j =1,4) is the amplitude scattering matrix (Bohren and Huffman, 1983,

Sect 3.3). By expressing the parallel and perpendicular components of the

incident field in terms of x and y: E, = EX, and E.i = -Ey, where EX = E0x,

E y = E0y, and E0 = 1, the x and y component values for the incident field

become: E' = -EX = 1 and EY = E = 0. With this information, the

matrix elements in equation 4.3 can be solved for in terms of x and y

components of parallel and perpendicular linearly polarized scattered light:

$3=S S=E E y  E (4.4)

--- 2 - S1 -- c

where C = exp{ikr}/-ikr.

The electric field at a detector Ed placed at distance rd in the unit
A

direction rid is obtained by summing the far-field amplitudes from the N

dipoles

k2eikd -NEd' = k (1 -rii) d edXE." (4.5)
rd j-1

where 1 is the identity matrix. Equation 4.5 is similar to equation 4.3. With

minor algebraic manipulation the elements of the amplitude scattering matrix

can be calculated using the coupled-dipole method.
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The values for the amplitude matrix are passed into a subroutine where

the 4 x 4 Mueller matrix is defined by

Is SI S12 S13 S14) li

Qs S21 S22 S23 '24 Qi (4.6)

US S31 S32 S33 S34  U1

vs s41 s42 S43 S44  V

(Bohren and Huffman, 1983, p 65). The Mueller matrix describes the

relationship between the incident and scattered Stokes vector. The Stokes

vector (I, Q, U, and V) is a description of the state of polarization of both

incident (i) and scattered (s) light. Monochromatic light of any state of

polarization can be represented by the Stokes vector. The I component

represents the irradiance of the wave; V defines its handedness. Q is related

to horizontally and vertically polar-zed light, and Q is related to ±450 linearly

polarized light. Horizontal and vertical are defined with respect to the

direction of wave prop-gation. (See Bohren and Huffman, 1983,

Section 2.11.1, for a more detailed derivation of the Stokes vectors.)

In Chapter 5, the scattering and detection of horizontally and vertically

polarized light will be discussed. When a plane wave has been linearly

polarized by an ideal linear polarizer, the electric field vector remains parallel

to a particular axis called the transmission axis. The Mueller matrix for an

ideal linear polarizer is
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1 cos2& sin2& 0

1 cos2 cos22  cos2& sin2 0 (47)

2 sin2 sin2E cos2E sin22Z 0

0 0 0 0

where is the angle between the transmission axis and the horizontal plane

(horizontal with respect to the direction of wave propagation). When a

particle is illuminated with horizontally polarized light, the amount of

backscattered light that is horizontally polarized can be determined by

multiplying a series of Mueller matrices; these are shown in equation 4.8.

I 1 00 1 100 1)

1 1 1 00 f(S 1  1 1 0 0  0 (4.8)
2 00 0 i 20 0 00 0

0000 0000 0

The 4 x 1 matrix on the right is the incident Stokes vector representing

normalized irradiance. Next to the Stokes vector is the Mueller matrix for a

linear polarizer with a horizontal transmission axis ( = 00). The product of

these two matrices yields the 4 x I Stokes vector that represents horizontally

polarized light. (S~i) is the Mueller matrix for the scatterer as obtained from

the coupled-dipole method. To determine the amount of scattered light that is

horizontally polarized, the Mueller matrix for a horizontal polarizer is required

once more. The product of these matrices gives the Stokes vector for scattered

light. The I component of the resulting Stokes vector represents the irradiance
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of horizontally polarized light scattered by a particle that was illuminated by

horizontally polarized light. This irradiance will be referred to as SH, and its

analog for vertically polarized light will be called Sw.. The product of the

appropriate Mueller matrices yields the following equations:

SHH - 1(tl+S 12 +S2 1+S22 )
4 (4.9)

SwV - 14(S1-S,2-S21+Sz)
4

Bickel and Bailey (1985) provide an illuminating characterization of scattered

light in the context of Stokes vectors and Mueller matrices.

Cross Sections

If a particle is interposed between a source of electromagnetic radiation

and a detector, the power received at the detector decreases. The decrease in

power or extinction of the incident wave is due to scattering and absorption by

the particle and depends on the particle's shape, size, and relative complex

refractive index as well as the frequency and polarization state of the incident

plane wave. Characterization of the extinction is usually denoted in terms of

particle extinction Cext, scattering Cxa, and absorption Cab, cross sections. For

plane waves, each cross section can be determined independently, and

agreement can be tested by considering energy conservation
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C.- C.& + Csca. (4.10)

The calculation of these cross sections in the coupled-dipole method is now

briefly described.

Extinction

The extinction cross section is calculated using the optical theorem

which indicates that extinction depends only on the scattering amplitude in the

forward direction. This may seem counterintuitive since extinction accounts

for both absorption in the particle and scattering in all directions by the

particle. For plane waves, the extinction cross section is determined by

calculating the work done by the incident electric field

C 4 exr fir). (4.11)

where p1 is the dipole moment and E, is the incident electric field at the jth

dipole as calculated by the coupled-dipole method, * indicates the complex

conjugate, and Im signifies that only the imaginary part of the argument be

evaluated.
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Scattering

The scattering cross section is determined by first calculating the time-

averaged power radiated per unit solid angle (Jackson, 1975)

dC sca = k4 t O -X¢2
n _ n I2(4.12)

where dCa/dgQ is sometimes called the differential scattering cross section.

This quantity represents the amount of light scattered into a unit solid angle in

direction n. Simpson's rule is used to integrate over the total solid angle to

yield the scattering cross section. For a good estimate of scattering cross

section, it is necessary to sum over a minimum of 33 theta (0) and 12 phi (p)

values, where dQ = sin 9 do do (Draine, 1988).

The average cosine of the scattering angle, or the asymmetry parameter

g, can be obtained while calculating the scattering cross section from

equation 4.12 as

k3 N

g M(cos8) = _____ fNQf CIE j (i ekf r 2 (4.13)
CCa IEi 12 j-1

The asymmetry parameter ranges in value from -1 to + 1. For a particle whose

scattered power density is symmetric about the scattering angle of 900, g

vanishes identically. If the forward scattering is larger (smaller) than

backscattering, then the asymmetry parameter is positive (negative).
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Absorption

The absorption cross section is determined by summing the power

absorbed by all the dipoles

C 4k N 2{m -k.(_3)*] 2ks/f./f*} (4.14)- I~~ i I -M

The first term on the right is the expression used by Purcell and Pennypacker

(1973). Draine (1988) added the second term (radiative reaction term) to

account for effect of the radiation on the motion of the dipoles as prescribed

by Jackson (1975, Chap 17). Including the second term improves calculation of

C... when comparing absorption by spheres with Mie theory.

The accuracy of these equations that determine the three cross sections

can be shown by comparing Ca + Ca with C,,.. Table 4.2 shows these values

for several spheres with different refractive indices.

BAckscattering

The backscattering cross section is calculated using the traditional

definition of the radar backscattering cross section (see Bohren and Huffman,

1983, Sect 4.6)
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Table 4.2 Results from the three independent equations used to
determine C,,a, C,,, and Cet . Conservation of energy
dictates that C,. + Cb, = C,,. Values in table show
excellent agreement. Values calculated by Mie theory are
also presented: Cxt(Mie). Size parameter of the modeled
sphere is 1.6. Cross sections have units of area.

Refractive index Cca Cabs Cabs + C, Cet Cxt(Mie)
1.14 + iO.26 5.87 27.00 32.87 32.88 33.23
1.33 + iO.05 11.09 7.65 18.74 18.75 19.22
1.55 + i0.005 33.84 1.00 34.84 34.84 37.32
1.39 + iO.42 17.77 40.14 57.91 57.91 57.99

1.7 + iW.1 47.78 19.23 67.01 67.02 72.43
1.9 + iO.0004 108.78 0.13 108.91 108.92 121.40
2.5 + il.4 50.03 61.49 111.52 111.53 97.85
3.5 + i2.05 52.37 58.29 110.66 110.67 94.28
3.0 + i4.0 53.59 56.11 109.70 109.70 92.97
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C - -4- (1s2(1800 ) 12 + S1(180o)1 2), (4.15)

where S2(180 °) and S1(180 0 ) are elements from the amplitude scattering

matrix.

The cross section efficiencies Q are calculated by dividing the respective

cross section by the geometric cross section of the particle G normal to the

incident wave. For example, the extinction efficiency is determined by

Qet = Ce, /G.
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Chapter 5

BACKSCATTERING CALCULATIONS

Light scattering is important in many fields of science: for example,

inferring properties of interstellar dust (Draine, 1988), locating dust particles

on computer chips (Taubenblatt, 1990), studying molecules by analyzing the

polarization state of scattered light (Harris and McClain, 1985). In remote

sensing of the atmosphere, often the only information available is the

backscattered signal. The objective of this chapter is to investigate the

advantages and disadvantages as well as the limitations of using the coupled-

dipole method for determining backscattering by hydrometeors.

Although most solid particles in nature are not spherical, it has become

too often the practice to model these particles as spheres using Mie theory.

Thus, the modeler avoids using a more computer intensive, but in many cases

more appropriate, model. Unfortunately, the assumption that randomly

oriented, nonspherical particles scatter like equal-volume spheres has become

the mindset of many modelers. Methods for calculating scattering by arbitrary

particles are often used to identify circumstances under which the practice of

using equal-volume spheres is least likely to lead to unacceptable errors, but it

is done in a fashion that appears to condone this practice rather than condemn

it. In this chapter, calculations for arbitrary particles will be compared with

those for equivalent-volume spheres.
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The first topic in this chapter is the shape sensitivity of the

backscattered signal. Next, scattering results from modeling spherical particles

using the coupled-dipole method are compared with Mie theory, and emphasis

is placed on how accuracy depends on size parameter. This is followed by a

brief discussion of how well a collection of dipoles on a cubic lattice can

represent a solid sphere, and whether small variations of shape affect

backscattering calculations. Next, backscattering by equal-volume particles of

different shapes are compared. With information from the preceding analyses,

backscattering of 94 GHz radar by ice spheres and crystals is investigated.

First, scattering results from modeling spheres with the coupled-dipole method

are compared with Mie theory to determine the accuracy of the model for the

refractive index of ice at 94 GHz: 1.878 + i4.76 x 10'. Finally, hexagonal

plates and columns are modeled. The impetus is to identify the advantages of

using linearly polarized radar to distinguish shape and size dependencies in

backscattering by ice crystals.

Shape-and Size Dependency of Backscattering

Bad data can be made to look good with a suitable choice of statistics.

In a similar fashion, numerical models can appear credible if only forward

scattering calculations are compared with analytic solutions. The coupled-

dipole method can be used to demonstrate why scattering is more critical in
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the backward direction. The scattering light is the sum of all the radiated

waves from the dipolar subunits, the intensity of the scattered light depends on

the phase relation among all the radiated waves. The following argument

appears in Bohren and Singham (1990).

The scattered field is the sum of the radiated waves by all the dipoles

that represent the particle. Consider the phase difference ,q of two waves

scattered by two separate dipoles excited by the same wave as shown in

Figure 5.1. Interaction between the dipoles is ignored. The phase difference

depends on the distance between the dipoles d (in the direction of wave

propagation), the wavelength of incident light, and the angle between the

incident and scattered waves 0:

-2itd

Al = - (1 - cosO). (5.1)

The phase difference dependence on the dipole separation is

a(&i). = 2n-(1 - cos0). (5.2)ad It

The phase difference is least sensitive to separation for scattering in the

forward direction (o = 0) and most sensitive in the backward direction

(0 = 3r). What is true for two dipoles in this simplified example is true for N

dipoles. Thus, in a general sense the cumulative separation of all the dipoles,

i.e. the particle shape, is critical for determining the backscattered signal. This

is also true when the dipole interactions are not ignored.
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H - d - *

Figure 5.1 Diagram showing the relationship between the phase difference
of two scattered waves and the distance between the scatterers.
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For large particles when the phase difference of the incident light across

the particle cannot be neglected, scattering is affected by interference among

the radiated waves, which can be accounted for by the dipole interactions.

Since the coupled-dipole method accounts for the interactions, it is expected to

accurately compute backscattering. This is illustrated in Figure 5.2 where

scattering results using the coupled-dipole method are compared with Mie

theory. The sphere modeled has a refractive index of 1.33 + i0.05 and a size

parameter of 1.60. The array used in the coupled-dipole method contains 461

dipoles; computations were made using the scattering-order technique. The

solid line represents Mie calculations. The dotted line is from the coupled-

dipole method after the first iteration, which is equivalent to ignoring the

dipole interactions; the dashed line represents a fully converged solution

(14 iterations). Backscattering calculations are more sensitive to dipole

interactions than forward scattering calculations. Thus, when judging model

capability it is better to compare backscattering calculations, since forward

scattering is least sensitive to shortcomings in the model.

The difficulty in accurately calculating the backscattered signal increases

with size parameter. Figure 5.3 shows forward scattering (dashed line) and

backscattering (solid line) as calculated by Mie theory for a sphere with

refractive index of 1.33 + iO.05 and illuminated by unpolarized light. For size

parameters less than about 0.5 both scattered signals vary with the sixth power

of particle radius, which is indicative of particles in the Rayleigh regime
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Figure 5.2 Importance of dipole interactions for backscattering calculations.
A sphere with refractive index 133 + iO.05 and size parameter of
1.60 was modeled. Solid line is from Mie theory. The other
lines are from the coupled-dipole method using the scattering-
order technique. The dotted line represents scattering values
with no dipole interactions; the dashed line represents a fully
converged solution that includes dipole interactions.
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Figure 5.3 Forward scattering and backscattering by spheres of increasing
size parameter. Spheres with refractive index 1.33 + iO.05 and
size parameters ranging from 0.1 to 50 were modeled. The
dashed line represents forward scattering; the solid line
represents backscattering.
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(negligible phase shift of the incident wave across the particle). For larger

particles, the effects of interference cause backscattering to fluctuate wildly;

hence, small errors in particle size further reduce computational accuracy. The

values in Figure 5.3 are obtained from Mie theory, which is a solution for a

sphere with a well-defined radius. In the coupled-dipole method the

representation of arbitrary particles by arrays of dipoles can make computing

backscattering less precise. Limitations are now examined.

Limitations of The Coupled-Dipole Method

The ability of the coupled-dipole method to calculate backscattering

depends on the particle's size and refractive index and how well the array of

dipoles represents the particle's shape. Dependence on refractive index is

addressed in Appendix A. Table A.1 shows that accuracy of scattering

calculations from the coupled-dipole method decreases with increasing

refractive index. This is due to the influence of higher order multipoles. In

this section the effect of small variations in particle shape and of increasing the

particle size will be examined.

Changing the particle size affects the accuracy of the scattering

calculations using the coupled-dipole method. When the particle is small

compared with the wavelength (size parameter less than 0.5) the phase

difference of the incident light across the particle is negligible. In turn, the
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dipoles are also small compared with the wavelength. Increasing the particle

size requires either increasing the radius or number of dipoles. The latter

option is permissible as long as the radius of the dipoles satisfies the criterion

that k0aI m < 0.5, and this criterion is not violated in the following analysis.

A sphere with a refractive index of 1.33 + iO.05 was modeled; its size

parameter was varied from 1.0 to 2.0 by increasing the radius of the dipoles.

The sphere was represented by three separate arrays: 251, 304, and 461

dipoles. The results in Figure 5.4 show good agreement with Mie theory until

the size parameter exceeds 1.6. It is at this size parameter that the

backscattered signal reaches its first minimum value (as shown in Figure 5.3).

This poor agreement with Mie theory at size parameters above that which

corresponds to the backscattering minimum also occurs for other refractive

indices. These results are the same whether using the matrix inversion or

scattering-order technique. To a lesser degree, but still occurring at the

backscattering minimum, forward scattering calculations lose accuracy as shown

in Figure A.2. Thus, for size parameters larger than that which corresponds to

the first backscattering minimum, scattering calculations from the coupled-

dipole method lose accuracy.

This loss of accuracy can be overcome somewhat by increasing the

number of dipoles in the array while decreasing their size. Figure 5.5 shows

the backscattering for a sphere with refractive index 1.33 + iO.1 represented by

arrays of 461, 739, 1064, and 2320 dipoles; results from Mie theory are
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Figure 5.4 Comparison of coupled-dipole method with Mie theory for
spheres of increasing size parameter. A sphere with refractive
index 1.33 + iO.05 was modeled. The particle size was increased
by increasing the size of the dipoles. The solid line represents
scattering by a 461 dipolar array, the dotted line by a 304 dipolar
array, and the dashed line by a 251 dipolar array.
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Figure 5.5 Improvement of backscattering by increasing the number of
dipoles. A sphere with refractive index 1.33 + i0.1 and a size
parameter 1.60 was model. The solid line is Mie theory. The
short-dashed line (--- -) represents scattering by a 461 dipolar
array, the multiple-dashed line (---) by a 739 dipolar array,
the dotted line by a 1064 dipolar array, and the long-dashed line
(. -) by a 2320 dipolar array.
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depicted by the solid line. In general, backscattering calculations improve by

increasing the number of dipoles; computation time always increases.

Increasing the number of dipoles in the array produces subtle changes in

the shape of the array. The question of how well an array of dipoles on a

simple cubic lattice represents a spherical particle is addressed in Appendix A

beginning on page 116. Draine (1988) presented a formula for estimating the

sphericity of an array of dipoles that represents a sphere. Table A.2 shows

that small variations in sphericity may affect scattering when shape dependency

is critical. As discussed in the previous section, backscattering is very shape

dependent; therefore, if these small variations of sphericity are important they

should affect backscattering calculations.

To check how backscattering depends on shape variations associated

with representing a sphere by a lattice of dipoles, two spheres with refractive

index 1.33 + iO.1 were modeled; one had a size parameter of 0.84 and the

other 1.60. Small variations in sphericity were obtained by representing each

sphere with 13 arrays that varied in size from 280 to 515 dipoles. The

effective radius of each array was held constant by varying the radius of the

dipoles. Thus, the main difference between the arrays was the specific shape

of each array. By Draine's criterion (1988), a perfect sphere has a radius of

gyration of 1, and the value for radius of gyration increases at the particle

departs from sphericity. Backscattering results are shown in Table 5.1. For

the smaller sphere the backscattering values all agree with Mie theory to
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Table 5.1 Effect of small variations in shape on backscattering calculations.
Two spheres with refractive index of 1.33 + i0.1 were modeled;
their size parameters are 0.84 and 1.60. N is the number of
dipoles in the arrays, ROG is the radius of gyration of the array
(Draine, 1988). ROG is an estimate of the sphericity of the
array--an exact sphere has a value of 1, deviation from 1
indicates nonsphericity. Rows are arranged by increasing ROG.
The percent difference calculation is:
[Su1(180°)/S 1(180 0 ; Mie)]-1. For the smaller sphere, effects of
small variations in shape are not critical as for the larger sphere.

N ROG % diff when % diff when

x = 0.84 x = 1.60

461 1.0006 0.6% -2.6%

304 1.0012 0.6 9.1

280 1.0018 1.3 15.9

437 1.0019 1.1 17.0

485 1.0020 0.1 -10.3

480 1.0027 1.6 28.8

432 1.0031 0.6 -2.1

515 1.0034 0.6 -2.4

360 1.0035 0.2 8.2

389 1.0035 1.4 18.0

365 1.0039 0.9 8.1

341 1.0048 1.5 25.1

305 1.0060 1.1 8.2
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within 2%; for the larger sphere, less than one-quarter of the values agree to

within 3% while nearly half disagree by more than 10%. The poorer

agreement for the larger particle is because its size is beyond the first

backscattering minimum as discussed on page 58. At this size parameter

backscattering becomes extremely shape dependent. A relation between

increased sphericity and improved backscattering calculations is not observed

in Table 5.1. Thus, Draine's criterion for radius of gyration does not generally

aid in choosing an array that best represents a sphere. This criterion may have

merit for calculations in the forward direction; however, for the more shape-

dependent backward direction it provides no guidance for selecting arrays.

For particles that are larger than that which produces the first

backscattering minimum, scattering calculations using the coupled-dipole

method become suspect. Increasing the number of dipoles in the array

generally improves the accuracy of these calculations.

Backscattering by Equal-Volume Particles

It was shown in the earlier sections of this chapter that accuracy of

backscattering calculations using the coupled-dipole metnod is dependent on

particle size and shape. This last sensitivity study examines whether the

overall particle shape strongly affects backscattering calculations. The equal-

volume particles modeled here are a prolate spheroid, rectangular solid,
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cylinder, and hexagonal column; all have an aspect ratio (ratio of length to

diameter) of 5:1 and size parameter of 1.0. An equal-volume sphere is

included. Three refractive indices chosen are: 1.5 + iO.00, 1.5 + iO.05, and

1.5 + iO.50; these values are representative of ice crystals in the wavelength

range from 6 to 15 um (peak outgoing terrestrial radiation) (Rusk et al., 1971).

Scattering calculations were made with these particles in orientations

that simulate natural conditions. Except for very large sizes and under

turbulent conditions, ice crystals are expected to fall without tumbling (Cho et

al., 1981; Pruppacher and Klett, 1980); therefore, the long axis of the particles

modeled here remain horizontal (in the x-y plane). The particles were allowed

to rotate in the horizontal plane, but not spin about their longitudinal axis. To

account for not spinning about the longitudinal axis, the particle was initially

oriented in the position that yielded the average backscattering value. For

instance, the rectangular solid was rotated 450 and the hexagonal crystal by

22.50; an initial rotation did not significantly alter backscattering by the prolate

spheroid or the cylinder because of their symmetry. Several states of

polarization of the incident wave were analyzed: Su, SHH, and Svv (see page 47

for a description of these). Modeling results are shown in Figures 5.6 through

5.9.

Figure 5.6 shows Sl,(180 ° ) for zenith angles ranging from 00 to 900 (the

angle is defined with the zenith at 00 and the horizon at 900) for the five

particles with refractive index 1.5 + iO.00. The horizontal line represents
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Figure 5.6 Backscattering of unpolarized light by equal-volume particles
with aspect ratios of 5:1 and refractive index 1.5 + iR.OO. The
solid horizontal line represents scattering by an equal-volume
sphere. The other solid line represents scattering by a hexagonal
column, the short-dashed line by a prolate spheroid, the dotted
line by a cylinder, the multiple-dashed line by a rectangular solid.
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Figure 5.7 Backscattering of horizontally polarized light by equal-volume
particles with aspect ratios of 5:1 and refractive index
1.5 + i0.00. The solid horizontal line represents scattering by an
equal-volume sphere. The other solid line represents scattering
by a hexagonal column, the short-dashed line by a prolate
spheroid, the dotted line by a cylinder, the multiple-dashed line
by a rectangular solid.
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Figure 5.8 Backscattering of vertically polarized light by equal-volume
particles with aspect ratios of 5:1 and refractive index
1.5 + i0.00. The solid horizontal line represents scattering by an
equal-volume sphere. The other solid line represents scattering
by a hexagonal column, the short-dashed line by a prolate
spheroid, the dotted line by a cylinder, the multiple-dashed line
by a rectangular solid.
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Figure 5.9 Backscattering of unpolarized light by equal-volume particles
with aspect ratios of 5:1 and refractive index of 1.5 + i0.50. The

solid horizontal line represents scattering by an equal-volume

sphere. The other solid line represents scattering by a hexagonal

column, the short-dashed line by a prolate spheroid, the dotted

line by a cylinder, the multiple-dashed line by a rectangular solid.
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backscattering by the equal-volume sphere (no angle dependence). The

remaining four particles display a similar relationship between zenith angle and

backscattering. These results indicate that the overall particle shape is more

important that subtle differences in the specific cross-section shape. Thus, for

particles with aspect ratios of at least 5:1, analytic or numerical methods which

treat elongated spheroids may be used to calculate backscattering by ice

columns with only minor compromise to model accuracy (e.g. Yeh et al., 1982).

Figures 5.7 and 5.8 show S.(1800) and Svv(180 0 ) for the same particles

and zenith angles as in Figure 5.6. At zenith angle of 00, corresponding values

of Sum(180 0) and Sw(1800 ) are equal because at this angle the particles appear

symmetric. With increasing zenith angle (looking down towards the horizon),

the values of SHH(18 0 ° ) decrease slower than those for S.,(180 0). This too is

expected because the horizontally polarized light excites the longer dimension

of the particle. This difference between Sir(1800 ) and SVV(18 0 ° ) is important,

and it will be discussed later as a means to infer the size distribution of ice

crystals by radar.

When the refractive index of these particles is changed to 1.5 + i0.05,

the backscattering calculations are similar to those shown in Figures 5.6

through 5.8 and are not presented. S,1(180 ° ) values for these particles with

refractive index 1.5 + iO.50 are shown in Figure 5.9. Backscattering for all

three refractive indices displays similar angle dependencies. The only

differences of note are the higher values when the refractive index is
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differences of note are the higher values when the refractive index is

1.5 + iO.50. This is a consequence of the smaller penetration depth due to the

larger imaginary part of the refractive index. Values for SHH(180 0 ) and

Svv(18 0 °) at this refractive index behave similarly to those in Figures 5.7

and 5.8.

The mean value of S11(180 0) (averaged over all zenith angles) for the

four elongated particles is similar to the backscattering by the equal-volume

sphere. The percent difference between the mean values of S,,(180 ° ) for the

elongated particles and the backscattering value for the equal-volume sphere

increases with increasing imaginary part of the refractive index (i.e., 3.6%,

3.8%, and 9.1% for these three refractive indices). Mugnai and Wiscombe

(1980) noted that absorption always improves the agreement of backscattering

by equivalent spheres; these calculations indicate the opposite. However, they

modeled particles that had only a slight deviation (10%) from sphericity.

The backscattering calculations reported in this chapter show size and

shape dependence. In addition, it is apparent that backscattering calculations

using the coupled-dipole method lose accuracy when the particle size is larger

than that associated with the first backscattering minimum. It also appears that

for elongated particles, small variations in the particle's cross section are

inconsequential. The last section addresses the size and shape dependence of

the first backscattering minimum of ice crystals at 94 GHz.
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Backscattering of 94 GHz Radar by Ice Crystals

The coupled-dipole method is applicable to studying backscattering of

94 GHz radar by ice crystals for several reasons. First, the coupled-dipole

method can calculate scattering by ice crystals. Second, the wavelength of this

radar is 3.2 mm; hence, the size parameter (or approximately the number of

dipoles N needed to represent the particle) is not prohibitively large when

modeling particles with linear dimensions of the order of one to five

millimeters. Third, with N < 300 the matrix inversion technique can be used

to rotate the particle through many orientations. Lastly, the refractive index of

ice at this frequency is not too large to prevent use of the scattering-order

technique for calculating scattering by larger ice crystals (when N > 300).

Of the models that calculate scattering by arbitrary particles, the

coupled-dipole method is best suited for studyting ice crystals. For example,

the T-matrix method calculates scattering by rotationally symmetric particle

with low aspect ratios; the ice crystals modeled here do not fit that description.

The relationship between particle shape and the first backscattering

minimum is one of the interests for studying backscattering at 94 GHz. For

falling raindrops, a backscattering minimum occurring at radius 0.83 mm

provides an opportunity to remotely identify spherical raindrop size (Lhermitte,

1988). This identification is possible because the terminal velocity of raindrops

increases with drop radius while backscattering by raindrops is at a local
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minimum for drop radius 0.83 mm. Doppler radars measure the line-of-sight

velocity of its targets (raindrops). When the radar is looking above the horizon

(elevation angle greater than 00), the Doppler shift is a result of both the

horizontal and vertical forces acting on the target. The Doppler shift of a

falling raindrop increases with drop size because terminal velocity varies with

drop size. If the Marshall-Palmer (1948) raindrop size distribution is assumed,

the relationship between the backscattering for each raindrop size and its

respective Doppler shift can be determined. The crucial point is that the

backscattering minima are also present in the Doppler shift spectrum. Since

the terminal velocity of raindrops with radius 0.83 mm is known, the vertical

component of the Doppler shift at that minimum can be determined. By

removing the vertical component of the Doppler shift, the horizontal

component remains. From the horizontal component one obtains a better

estimate of the clear air velocity. This information about air motion may help

to better understand cloud dynamics, cloud structure, and precipitation process.

This procedure is based on identifying the backscattering minimum

which occurs for spheres. If a backscattering minimum is present for a size

distribution of ice crystals this procedure could increase our understanding of

ice clouds. Since ice crystals are nonspherical, Mie theory is not an applicable

modeling tool; therefore, an alternative model such as the coupled-dipole

method is required. Before calculating the backscattering of 94 GHz radar by
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ice crystals, the accuracy of the coupled-dipole method will be estimated by

first comparing scattering results for ice spheres with Mie theory.

Ice Spheres

The scattering-order technique was used to calculate backscattering by

ice spheres, and the results were compared with Mie theory. The refractive

index of ice (00 C) at 94 GHz is 1.878 + i4.76 x 10". The number of dipoles

in the arrays used to represent the sphere ranged from 461 for the smallest

sphere to 2320 for the largest sphere. The number of dipoles was increased to

keep the dipole radius small. This improves the accuracy of the calculations

above the backscattering minimum, which occurs at a radius of 0.73 mm for

ice. The results shown in Figure 5.10 indicate that calculations by the coupled-

dipole method do fairly well at identifying the correct size parameter and

magnitude of the backscattering response at the first minimum. The final step

is to calculate backscattering by ice columns and plates.

Hexagonal Columns and Plates

The two ice crystals selected to be modeled are a hexagonal column and

plate with aspect ratios 3.5:1 and 3.2:1, respectively. Hexagonal prismatic is

the basic shape of ice crystals, although laboratory observations have revealed
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Figure 5.10 Comparison of coupled-dipole method with Mie theory for an ice
sphere at 94 GHz (m = 1.878 + iO.0005). The solid line
represents Mie theory; the dots represent coupled-dipole method.
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a few other shapes (Pruppacher and Klett, 1980, Chap 2). The aspect ratio of

5:1 for the column would have been a better representation based on

observations, but computer memory requirements restricted the size.

The matrix inversion technique was used to calculate backscattering by

the ice crystals. The first set of calculations were made to dispel the notion

that randomly oriented particles always scatter like equal-volume spheres.

Backscattering by the ice column and plate was calculated with the

particles positioned in 100 orientations. The values for the column, plate, and

sphere are shown in Figure 5.11. For size paraneters less than 0.8 the

difference between the backscattered signals is not too great. (This was

observed in Figures 5.6 through 5.9 where the average backscattered signal

from the randomly oriented particles with a size parameter of 1.0 was

approximately equal to the backscatter from an equal-volume sphere.) At size

parameters larger than 1.0 the backscattering signal of the sphere does not

coincide with the minima for the other particles. Beyond this particle size, the

backscattered signals differ by as much as a factor of six. Thus, at small size

parameters and for particles of refractive indices close to unity, using an equal-

volume sphere in place of randomly oriented particles may not be a bad

assumption when calculating orientationally averaged backscattered signals;

however, at larger size parameters the backscattering becomes very shape

dependent, randomly oriented particles might no longer scatter like spheres.
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Figure 5.11 Backscattering of unpolarized light by randomly-oriented, equal-
volume particles of increasing size parameter and with refractive
index 1.878 + iAO0. Calculations were made with the coupled-
dipole method. The solid line represents a sphere, the dashed-
line represents a hexagonal column with aspect ratio of 3.5:1, and
the dotted line represents a hexagonal plate with aspect ratio of
3.2:1.
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The next set of calculations was made to determine a shape and size

dependence of the first backscatter minimum for ice. For subsequent modeling

the orientation of the crystals was assumed to be identical to that in the

preceding section on backscattering by equal-volume particles: the particles do

not tumble, and they are allowed to rotate within the horizontal plane.

Figures 5.12 through 5.16 show the dependence of backscattering by the

hexagonal column (aspect ratio of 3.5:1) on size parameter, which is based on

that of an equal-volume sphere. The values for size parameter range from 1.0

to 2.2 and correspond to column lengths of 2.1 to 4.6 mm. The five lines in

the figures represent zenith angles of 100, 300, 500, 700, and 900.

Unnormalized values of SI,(180 0) are shown in Figure 5.12; in these and

subsequent results the local maximum in the backscattering signal for 100 is

about twice that for the other angles. In succeeding figures the local maximum

has been normalized to 1.0 for comparing relative changes in the

backscattering signal. Normalized values of S,,(180 0 ) are shown in ;Figure 5.13.

For the zenith angles 300 and 900 the relative difference between the local

maximum and minimum is small, and it is largest for 500 and 700. The shapes

of the curves are somewhat different for values of SHH(1800) and Svv(1800)

(shown in Figures 5.14 and 5.15). The relative difference between the local

maximum and minimum for the SH(180°) curves are more pronounced for the

smallest zenith angles. For S.(1800 ) the relative difference between local

maximum and minimum is similar for all angle except 900, but the noticeable
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Figure 5.12 Backscattering of unpolarized light by ice columns of increasing
size parameter at various zenith angles. The short-dashed line
(--- -) represents a zenith angle of 10 0, the dot-dash line (- . - -) a
zenith angle of 300, the dotted line a zenith angle of 500, the
solid line a zenith angle of 700, and the long-dashed line (-
-- ) a zenith angle of 900.
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Figure 5.13 Backscattering of unpolarized light by ice columns of increasing
size parameter at various zenith angles. Same as figure 5.10
except the local maximum value in the curves have been
normalized to 1.0. The short-dashed line (-- -) represents a
zenith angle of 100, the dot-dash line (- .-) a zenith angle of
300, the dotted line a zenith angle of 500, the solid line a zenith
angle of 700, and the long-dashed line ( ) a zenith angle
of 90.
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Figure 5.14 Backscattering of horizontally polarized light by ice columns of
increasing size parameter at various zenith angles. The short-
dashed line (- - -) represents a zenith angle of 100, the dot-dash
line (- .. -. -) a zenith angle of 300, the dotted line a zenith angle
of 50", the solid line a zenith angle of 700, and the long-dashed
line (---) a zenith angle of 900.
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Figure 5.15 Backscattering of vertically polarized light by ice columns of
increasing size parameter at various zenith angles. The short-
dashed line (--- -) represents a zenith angle of 100, the dot-dash
line (- - -) a zenith angle of 30° , the dotted line a zenith angle
of 50, the solid line a zenith angle of 70 ° , and the long-dashed
line (. -) a zenith angle of 90°.
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Figure 5.16 Backscattering by ice columns of increasing size parameter at
zenith angle of 700. The dashed-line represents unpolarized

light, the dotted line represents horizontally polarized light, and
the solid line represents vertically polarized light.
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feature is the narrowing of the local maximum feature at the two largest zenith

angles. A comparison of the backscattering signal at 70c for all three states of

polarization is shown in Figure 5.16. The most pronounced local minimum is

calculated to appear near a size parameter of 2.0 for S.(180°). The

comparison of the backscattering signals in Figures 5.12 through 5.16 agrees

with one's intuition that linearly polarized microwave radar (in particular Svv)

would produce better definition in the backscattering curves. This is also

evident in backscattering by ice plates.

Figures 5.17 through 5.20 show the dependence of backscattering by the

hexagonal plate (aspect ratio of 3.2:1) on size parameter. The size parameter

calculation is again based on an equal-volume sphere. The values for size

parameter range from 0.6 to 2.4 and correspond to plate diameters of 0.8 to

3.3 mm. The five lines in the figures represent zenith angles of 100, 300, 500,

700, and 900. Normalized values of S,,(180 0) are shown in Figure 5.17.

Unlike the results for the hexagonal column, the backscattering minimum for

the plate is spread over a larger range of size parameters, and it occurs at a

lower size parameter for higher zenith angles. The relative difference between

the local maximum and local minimum also decreases with increasing zenith

angle. For values of SH,(1800 ) and Svv(1800 ) (shown in Figure 5.18 and 5.19)

the shapes of the curves are again dissimilar. The main difference between

SHH(180 0 ) and S,,(180 °) is a slight deepening of the backscattering minimum at

a zenith angle of 500. The noticeable differences between Swv(1800 ) and
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Figure 5.17 Backscattering of unpolarized light by ice plates of increasing size
parameter at various zenith anvles. The short-dashed line (--- -)
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Figure 5.18 Backscattering of horizontally polarized light by ice plates of
increasing size parameter at various zenith angles. The short-
dashed line (--- -) represents a zenith angle of 100, the dot-dash
line (; .. -. -) a zenith angle of 300, the dotted line a zenith angle
of 50 , the solid line a zenith angle of 70, and the long-dashed
line (- - -) a zenith angle of 900.
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Figure 5.19 Backscattering of vertically polarized light by ice plates of
increasing size parameter at various zenith angles. The short-
dashed line (--- -) represents a zenith angle of 10 , the dot-dash
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Figure 5.20 Backscattering by ice plates of increasing size parameter at zenith
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dotted line represents horizontally polarized light, and the solid
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S,1(180 0) are the shallower minimum at zenith angle of 500 and the presence

of the second backscattering minimum for all zenith angles except 100 and 90"

(a shallow minimum occurs at 700, but it is out of range of the figure). A

comparison of the backscattering signal at 500 for all three states of

polarization is shown in Figure 5.20. In contrast with the results for the

hexagonal column, SHH(80 0 ) produces the largest relative difference between

the local maximum and minimum.

The backscattering minima for ice crystals have an added feature over

their counterparts for spherical raindrops: a dependence on zenith angle. This

dependence disappears if the ice crystals tumble as they fall; nonetheless, this

could provide information about turbulence in the vicinity of the crystals.

Thus, backscattered signals collected while the radar sweeps through zenith

ningla inny be mefu! In romotely opnoing (Ia u(moAphorle environment,

Several neeim wIllhln tho roiom of v41srology Wou1ld 811 1f, Iy JIvJIog

ft better urndetstanding Ot the erysial chairactteistis within fee couds.- climate

modeling, atmospheric chemistry, and cloud physics (Vogelmann, et al., 1990).

The transfer of infrared radiation through cirrus clouds is an issue in the

debate over global warming. Modeling scattering by cirrus clouds can be

improved if the size and shape distribution of the ice crystals are known. The

scavenging or removal of atmospheric aerosols, including sulfates that

contribute to acid precipitation, depends on the shape of the crystal. The

scavenging efficiency of ice crystals appears to increase with surface to volume
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ratio (Dungey, 1976). Crystal growth and aggregation are important

mechanisms in the precipitation process. By analyzing backscattering signals

from different levels within the atmosphere the growth of the ice crystals may

be estimated.

Although identification of size and shape distributions of ice crystals

using this procedure seems feasible, several contributing technological factors

are still uncertain. The technology required to build millimeter-wavelength

radar is relatively new. Present research and development of millimeter wave

tubes is expected to result in construction of more powerful transmitters

(Lhermitte, 1990), thereby increasing the sensitivity of the radar. The size

range of ice crystals in this chapter is typical of falling snow. To identify the

size distribution of smaller ice crystals, a shorter wavelength is required. A

recently developed 1.4 mm (215 GHz) wavelength radar (Mead et al., 1989)

has the potential for observing the first minimum in backscattering by smaller

ice crystals; however, at this wavelength attenuation by atmospheric water

vapor may (depending of the transmission power) limit the system's

performance.

Identification of ice crystal size distribution depends on several other

factors. First, the size distribution is assumed to be continuous. A

discontinuous size distribution would produce gaps in the Doppler shift

spectrum which could be mistaken as a backscattering minimum. Second,

crystal aggregation should be a minimum. Backscattering calculations are
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made only for plates and columns; scattering by aggregates may irretrievably

obscure the desired backscattering minima. Third, the optical depth of the ice

crystals is not too large, otherwise the backscattered signal will be a result of

multiple scattering events. The procedure for identifying ice crystals is based

on single scattering.

In this chapter, the ability of the coupled-dipole to calculate

backscattering by nonspherical particles was demonstrated. For spheres

smaller than the size which produces the first backscattering minimum, small

shape variations in the dipolar array do not affect the accuracy of the

backscattering calculation. Conversely, when the spheres are larger than the

size which produces the first backscattering minimum, backscattering

calculations lose accuracy. For particles with a large aspect ratio (at least 5:1)

and small size parameter, the backscattering calculation is relatively insensitive

to the exact shape of the particle, i.e. hexagonal column, cylinder, etc. Finally,

backscattering calculations for hexagonal columns and plates have been

presented. Although this is not a definitive work in radar meteorology, it is

feasible that a size distribution of ice crystals could be estimated using remote

sensing techniques. This can also be scaled down for observing cirrus crystals

with an instrument operating at a shorter wavelength. In general, the size of

the ice crystals will dictate the wavelength that will be best suited for obtaining

the first backscattering minimum.
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Chapter 6

SUMMARY AND CONCLUSION

The problem of light scattering by arbitrary particles can be approached

a number of ways. One option too often taken is to assume that the particles

are spherical. This assumption simplifies the computational task by allowing

Mie theory to be used for the calculations; however, this oversimplification

may lead to unacceptable errors. The other option is to appreciate the shape

of the particles and choose an appropriate computer model to calculate the

particle's scattering properties.

As described in this dissertation, the coupled-dipole method is

applicable for modeling a considerable variety of arbitrary particles. First, a

particle of any shape can be modeled using this method. Second, several

solution techniques are available depending on the physical characteristics of

the particle. If the size parameter of the particle is small (< 2 or 3 depending

on shape or refractive index) or if the particle is to be modeled in numerous

orientations, the matrix inversion technique may be used. If the relative

refractive index of the particle is not too large (< 2), computer memory

limitations can be avoided by using the scattering-order technique.

Another consideration in the coupled-dipole method is the relationship

between the polarizability of the discrete dipolar subunits and the relative
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refractive index of the particle being modeled. In most papers the Clausius-

Mosotti (CM) relation or the CM relation with a radiative reaction term has

been used. Since the formulation of the coupled-dipole method is based on

subunits that radiate as dipoles, the conversion of relative refractive index to

electric dipole polarizability (using the first term from Mie theory referred to

as Doyle's method) was incorporated into the method. The results using

Doyle's method show a better agreement with Mie theory than using the other

schemes. Further calculations showed that Doyle's method can be used near a

resonance mode (Frdhlich mode) for small particles and that the results

compared favorable with measured data.

Input parameters for the coupled-dipole method have been added to

accommodate a variety particle shapes and sizes. Subroutines are available for

constructing arrays of dipolar units that represent spheres, spheroids,

rectangular solids, cylinders, and hexagonal crystals. The capability of

specifying the size of particle has also been included. Output provides a

number of useful scattering parameters: Mueller matrix elements for any

scattering angle as well as scattering, absorption, and extinction cross sections.

The ability of the coupled-dipole method for determining backscattering

calculations was investigated. A simple model was presented to show why

scattering in the backward direction is most sensitive to particle size and shape.

The sensitivity was shown to be a result of the phase relation of scattered

waves from the dipolar subunits. Backscattering values using the coupled-
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dipole method compare favorably with Mie theory for spheres which are

smaller than the size parameter associated with the first backscattering

minimum (e.g., size parameter of 1.6 for relative refractive index of

1.33 + iO.05). At this and larger size parameters, backscattering becomes

extremely shape dependent, and modeling results from the coupled-dipole

method lose precision because an array of dipolar subunits arranged on a

simple cubic lattice cannot adequately represent a solid sphere. Small

variations in shape were shown to strongly affect backscattering calculations

for spheres with size parameters which are near the size parameter associated

with the first backscattering minimum. Agreement between the coupled-dipole

method and Mie theory can be improved by increasing the number of dipolar

subunits in the array; however, this also increases computer memory

requirements and computation time.

Backscattering by equal-volume particles was investigated using the

coupled-dipole method. A cylinder, rectangular solid, prolate spheroid, and

hexagonal column of equal volume and with aspect ratio 5:1 were modeled,

and the results were compared with those of an equal-volume sphere. Despite

the difference in cross-sectional shape, the elongated particles displayed similar

scattering properties for three different refractive indices. However, the size

parameter of the particles was only 1.0. If the particles were larger than the

size which corresponds to the first backscattering minimum, backscattering by

the elongated particles might not agree so well because of the extreme shape
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dependence as discussed above. The average backscattering value for the

elongated shapes (this simulated random orientation of the particles) was

approximately equal to that for the equal-volume sphere; however, agreement

decreased with increasing refractive index.

Finally, backscattering of 94 GHz radar by ice crystals was examined.

The accuracy of the coupled-dipole method in this application was shown to be

good by comparing calculations of backscattering by ice spheres with Mie

theory. Backscattering by randomly oriented ice columns and plates was

compared with backscattering by equal-volume ice spheres. For small size

parameters the backscattering values are in fair agreement; however, for larger

size parameters they differ by as much as a factor of six.

The orientation of the ice columns and plates was then made more

restrictive by modeling them as if they fell through the atmosphere without

tumbling. The resulting backscattering calculations now contained a

dependence on zenith angle. The first backscattering minima are present for

both type crystals, but with noticeable differences. The relative difference

between the local maximum and the first backscattering minimum for the ice

plate is larger than that for the column, and the backscattering minimum for

the plate is spread out over a larger range of size parameters. The use of

horizontally and vertically polarized waves also enhance the magnitude of the

first backscattering minima.
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Backscattering minima by raindrops can be detected, and the

information is used to determine additional features of the atmosphere. These

variations in backscattering minima by ice crystals at 94 GHz may be used to

remotely estimate their size and shape distributions. Knowledge of the ice

crystal characteristics would benefit the areas of climate modeling, atmospheric

chemistry, and cloud physics. Present research and development of millimeter

radar technology will provide increased sensitivity, which makes this scheme

for identifying ice crystals even more promising (Lhermitte, 1988).

In conclusion, scattering by arbitrary particles can be approximated by

assuming their scattering properties are similar to that of equal-volume

spheres. This practice has advantages and disadvantages. The calculations for

scattering by equal-volume spheres are quick and inexpensive, and in many

instances they provide a reasonable first-order estimate of the scattering

properties of the arbitrary particles that may not have been initially apparent.

But by using the equal-volume sphere approach, additional scattering

information may be overlooked.

It was shown that scattering by an equal-volume sphere agrees favorably

with that for small, tumbling ice crystals at 94 GHz (size parameter less than

0.8). Thus in this case the equal-volume sphere approximation will save

computer time and costs while providing reasonable results. However, for size

parameters larger than 1.0, the equal-volume sphere approximation will lead to

large errors. Moreover, when the ice crystals are assumed to be not tumbling,
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the scattering results take on additional features. The backscattered signal

becomes dependent on zenith angle and on the polarization of the incident

wave. These properties of scattering may help to identify the shape and size

distributions of ice crystals, but they will never be present for spheres.

Therefore, while calculating scattering by spheres may be a simple task and

sometimes a fairly accurate approximation, important information could be

omitted.

The next problem to be solved is that of inverting the backscattered

signal to useful information about the size and shape of the ice crystals.

Variations in backscattering for ice crystals of different aspect ratios should

also be examined. The refractive index of ice at 94 GHz is sufficiently large

to induce higher order multipoles in the ice crystals. It may be advantageous

to incorporate the calculation of these multipoles in the coupled-dipole method

to improve the accuracy of scattering calculations.
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Appendix A

This appendix has been accepted for publication in the Journal of the
Optical Society of America A. A slightly modified version of the paper
is given here.

LIGHT SCATTERING BY NONSPHERICAL PARTICLES:

A REFINEMENT TO THE COUPLED-DIPOLE METHOD

Clifton E. Dungey' and Craig F. Bohren

Department of Meteorology, The Pennsylvania State University

University Park, Pennsylvania 16802

Abstract

In the coupled-dipole method an arbitrary particle is modeled as an

array of N polarizable subunits each of which gives rise to only electric dipole

radiation. The Clausius-Mosotti relation is widely used to calculate the

polarizability of the subunits that corresponds to the dielectric function of the

particle that the array represents. In this paper we replace the Clausius-

Mosotti relation with an exact expression for the electric dipole polarizability

and find improvement in extinction calculations for spheres as compared with

Mie theory. Near a Fr6hlich frequency the coupled-dipole method yields

extinction cross sections for spheres and spheroids that compare favorably with

the method of continuous distribution of ellipsoids and measured values.

'Captain Dungey is assigned to Penn State through the graduate meteorology
program of the Air Force Institute of Technology.
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Introduction

The coupled-dipole method was apparently first applied by Purcell and

Pennypacker (1973) to calculate approximate cross sections of nonspherical

particles. Partly owing to the enormous computer storage and CPU time

required for modeling particles with large size parameters, this method never

has had a great following. But in the past few years, with faster computers

and more efficient programming techniques, an increasing number of people

have begun using this relatively simple technique. For example, Draine (1988)

has used it to study scattering by interstellar grains; Goedecke and O'Brien

(1988) and Flatau et al. (1990) have examined scattering by ice crystals;

S. B. Singham et al. (1986a) calculated differential scattering by chiral

particles; and Varadan et al. (1989) computed scattering by anisotropic

particles.
The coupled-dipole method has remained essentially unchanged since its

inception. An arbitrary particle is divided into an array of N subunits located

on a simple cubic lattice (Figure A.1). The dipolar subunits are sufficiently

small to give rise to only electric dipole radiation. Total scattering is then

calculated by summing the waves scattered by each dipolar subunit excited by

the incident wave and by the waves scattered to it from all its neighbors. The

coupled-dipole method originally was formulated (Purcell and Pennypacker,

1973) heuristically; however, a more formal mathematical derivation and a

short review of the method has been published recently (Lakhtakia, 1990).

Some recent modifications made to the coupled-dipole method include

more efficient means of calculating scattering by randomly oriented particles

(Singham et al., 1986b) and improved solution algorithms (Draine, 1988; Flatau

et al., 1990; Chiapetta, 1980; Singham and Bohren, 1988) that permit larger

values of N. For scattering calculations in this paper we rely on the matrix

inversion technique (Singham and Salzman, 1986) to solve the interaction
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Figure A.1 A spherical particle which has been represented by an array of
136 dipolar subunits. The effective radius of the sphere is
determined by a, = (3N/4;), where the dipolar subunits are
assumed to have unit volume.
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matrix directly. Although N is limited to 300 in this technique because of the

need to store the matrix, we are guaranteed a solution provided that the matrix

is algorithmically nonsingular. The matrix inversion method also permits the

efficient calculation of extinction cross sections of nonspherical particles in

random orientations (Singham et al., 1986b). In this paper we treat only

isotropic scatterers.

An integral part of the coupled-dipole method is an effective-medium

theory that provides the relationship between the polarizability of the

individual dipolar subunits and the bulk dielectric function of the continuous

medium that the array represents. The most widely used effective-medium

theory for determining the polarizability has been the Clausius-Mosotti (CM)

relation, in some instances with slight modifications (e.g. Draine, 1988).

In next section, following Doyle (1989), we calculate the electric dipole

polarizability using an exact expression. Using this expression in the coupled-

dipole method generally leads to calculated extinction cross sections more in

accord with Mie theory.

In final section we test Doyle's method on particles in the neighborhood

of a Fr6hlich frequency. This is a strong absorption mode highly dependent on

both particle size and shape. Extinction cross sections near the Fr6hlich mode

are computed for spheres and spheroids by using the coupled-dipole method

and are compared with results from Mie theory, the method of continuous

distribution of ellipsoids (CDE), and measured values (Huffman and Bohren,

1980). The nature of the shape-dependent extinction determined by the

coupled-dipole method is used to analyze small discrepancies between results

from modeling spheres with the coupled-dipole method and Mie theory.
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Effective-Medium Theory

When dealing with a composite material consisting of small grains

embedded in a homogeneous matrix, one must measure or estimate the

dielectric function from a theory. If the optical properties of the embedded

grains and the matrix are known, one uses an effective-medium theory to

estimate the bulk characteristics of the composite. This problem is the

converse of that faced by those using the coupled-dipole method for which the

bulk dielectric functions of the particle (composite) and surrounding medium

are known and the optical properties of the dipolar subunits (grains) must be

calculated.

The Maxwell Garnett relation is an effective-medium theory that can be

used to determine the dielectric function of the dipolar subunits. By assuming

spherical dipolar subunits, we can reduce the Maxwell-Garnett relation

(Bohren and Huffman, 1983, Sect 8.5):

2(1-f)e' - (2+f)eme (A.1)
dip (1-f)e - (1+2f)em

where Edip, e, and cm are the dielectric functions of the dipolar subunits, the

bulk particle, and its surrounding medium; and f is the volume filling factor.

For spherical dipolar subunits on a simple cubic lattice with diameters equal to

the lattice spacing f = ar/6.

Purcell and Pennypacker (1973) used the CM relation to obtain the

complex polarizability a of the dipolar subunits from the dielectric function of

the material:
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3(e - em) (A.2)

N(e + 2em)

where N is the number of dipolar subunits per unit volume. Although the

Maxwell-Garnett and CM relations yield different physical parameters, their

formal derivations have been shown to be essentially identical (Barker, 1973).

The relationship between a and Edip is obtained by combining equations (1)

and (2) producing another form of the CM relation:

a 47ta 3 (e t, - e) (A.3)

(edi + 2 em)

where a is the radius of the dipolar subunits. Equations (1) and (3) will be

referred to later, but next we briefly examine a shortcoming in the CM relation

when it is used in the coupled-dipole method.

The optical theorem states that the extinction cross section Cext for small

spheres is determined from the imaginary part of its polarizability. When C is

purely real the CM relation produces a purely real a. Since Ce cannot be

zero because the incident wave must be attenuated by scattering, a must be

complex. Draine (1988) and Goedecke and O'Brien (1988) provide methods

that satisfy this criterion, we introduce a third.

When investigating the optical properties of small metal spheres

suspended in a transparent medium, Doyle (1989) used an exact expression for

the electric dipole polarizability

c 67 (A.4)
e- k aa1

where k = 23ra/A and a1 is the electric dipole coefficient from Mie theory:
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m W(mx)*'(x) - *j(x)*j'(mx) (A.5)

a1 mip(mx) 1 '(x) -

with 0, and , being Riccati-Bessel functions and x = ka. In Doyle's

application m is the ratio of the complex index of refraction of the metal

spheres to that of the medium; for the coupled-dipole method it is the ratio of

the index of refraction of the dipolar subunits to that of the medium. When

using this exact expression for the electric dipole term, Doyle calculated

reflectances of a composite that agreed better with experimental values than if

only the first term in the series had been used.

The coupled-dipole method operates on the principle that the dipolar

subunits are sufficiently small that they give rise to only electric dipole

radiation. It was therefore appropriate to incorporate equations A.4 and A.5

into the coupled-dipole method. In what we now refer to as the Doyle

expression, the polarizability of the dipolar subunits are calculated using this

exact expression for the electric dipole polarizability. The value for m in

equation A.5 is obtained from equation A.1 where m2 = Edip/Ew. In the small-

particle limit, the Doyle expression reduces to the CM relation.

To guarantee a complex a, Draine used a radiative reaction term that is

contained in the Doyle expression. If a, were expanded in a series of the size

parameter x, the radiative reaction term would be the third in the series. The

Doyle expression and Draine's radiative-reaction factor are similar in that they

modify the entire interaction matrix. Goedecke and O'Brien (1988) use a self-

term correction that modifies only the diagonal elements of the matrix. We

now compare results from the coupled-dipole method by using the CM

relation, Draine's radiation correction, and Doyle's expression. In our model

all the dipolar subunits are spherical; most of the particles (dipolar arrays) that

are modeled are also spherical. In our discussions we try to distinguish

between the two.
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In this section dipolar arrays representing spheres are modeled and the

results are compared with BHMIE (Bohren and Huffman, 1983, Appendix A).

For the first comparison the arrays range in size from 27 to 251 dipolar

subunits. If the spacing of the lattice is considered to be 1 du (dipole unit)

then the corresponding effective radii for the modeled spheres range from 1.86

to 3.91 du. A wavelength of 12.5 du was used. Figure A.2 shows relative

values of Q, for two refractive indices using the three schemes to determine

the dipolar subunit polarizability. For this comparison the Doyle expression

agrees best with Mie theory.

One input variable remained constant for this comparison: the size

parameter of the dipolar subunits. Purcell and Pennypacker (1973) state that if

ka < 0.35, the coarseness of the array would not cause serious errors in the

calculations. Yung (1978) claims reliable results when ka < 0.17. By also

considering the wavelength of the electric field within the dipolar subunit

Draine's guidance (1988) suggests ka(ml < 0.5 when an accuracy of 10% is

desired, where Iml is the modulus of the complex refractive index; for this

comparison these values were 0.33 and 0.43.

In the second comparison the size of the dipolar subunit was varied.

The range of kalml was from 0.13 to 1.07. The sphere was represented by an

array of 136 dipolar subunits; the wavelength was 12.5 du. As seen from

Figure A.3, when the size parameter of the subunits is small, all three schemes

for determining polarizability compare well with Mie theory. Over the entire

range the Doyle expression is the most accurate. Note the increasing

overprediction by all three schemes above kalm( = 0.8, which occurs as Qt of

the bulk sphere is reaching a maximum value of 3.7. Not only does the Doyle

expression overpredict least, it is the only one to respond to the falling values

of 0 ext at the largest size parameter indicated.
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Figure A.2 Comparison between Mie theory and the coupled-dipole method
using different schemes to calculate polarizability while varying
the number of dipolar subunits. Calculations using the Doyle
expression are represented by ( ), Draine's radiative
reaction term by ( ... ), and the Clausius-Mosotti relation by
(---- ). N varies from 27 to 251; size of dipolar subunit remains
constant. Results for two refractive indices are shown.
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Figure A.3 Comparison between Mie theory and the coupled-dipole method
using different schemes to calculate polarizability while varying
the size of the dipolar subunits. Calculations using the Doyle
expression are represented by (-), Draine's radiative
reaction term by (" .), and the Clausius-Mosotti relation by

S....-). N remains constant (136 dipolar subunits).
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The index of refraction was varied in the third comparison. An array of

136 dipolar subunits was modeled; the effective radius of the particle remained

constant and the wavelength was 12.5 du. Nine refractive indices were

selected from earlier papers (Purcell and Pennypacker, 1973; Draine, 1988)

and from various practical applications. As seen in Table A.1, agreement

between the coupled-dipole method and Mie theory generally varies inversely

with ka liml. Among the different schemes the Doyle expression gives the best

overall results. For instance, no improvement is noted for m = 1.44 + iO.26

but the coupled-dipole method already compares to within 1% of Mie theory.

At the two largest refractive indices the Doyle expression does not compare

best with Mie theory. It may be that the other schemes are near a crossover

point as was the case in Figure A.2 near ka lm = 0.8. However, the use of the

coupled-dipole method in this particular application is not recommended

because the higher order multipoles associated with the large refractive index

are undoubtedly introducing error in the calculations. A better comparison

would be made with a much array with a larger number of dipoles;

unfortunately, the array size is limited in the matrix-inversion method.

When the coupled-dipole method is used appropriately (ka liml < 0.5)

the Doyle expression yields extinction efficiencies that agree better with Mie

theory than the other two schemes do. Incorporation of the Doyle expression

into the coupled-dipole method adds negligible computation time.

The refractive indices used in the previous comparisons are appropriate

only for regions in which surface modes are not excited. A more stringent test

of Doyle's expression is how well it enables the coupled-dipole method to

calculate extinction near surface mode frequencies.
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Table A.1. Comparison of Qext for nine spheres of different refractive
indices as calculated by Mie theory and by the coupled-
dipole method with either the Doyle expression, Draine's
radiation reaction term, or the Clausius-Mosotti relation.
Values shown are [Q, JQt(Mie)-1]. A 136-dipole array is
used for the couplh,d-dipole calculations; effective radius
of the sphere ren'zins constant at 3.19 du. Rows are in
order of increasing size parameter of the dipolar subunit.

Refractive Index Doyle Draine Clausius- ka m 1

Mosotti
1.44 + iO.26 -1.0% -1.0% -1.0% 0.29
1.33 + iO.05 -1.7 -3.3 -5.0 0.34
1.55 + iO.005 -6.8 -11.1 -12.8 0.39
1.39 + iO.42 0.0 -1.1 -0.6 0.37

1.7 + i0.1 -7.1 -12.4 -12.8 0.42
1.9 + iO.0004 -10.3 -18.7 -18.4 0.48
2.5 + il.4 14.1 16.0 16.7 0.72
3.5 + i2.05 17.3 19.7 15.3 1.02
3.0 + i4.0 30.0 18.1 36.9 1.26
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Surface Modes

Resonance features known as surface modes can exist in small-particle

absorption spectra even when none occur in the bulk material. Surface modes

are caused by lattice vibrations in insulators and most commonly occur on the

high-frequency side of bulk absorption bands. The absorption characteristics

associated with a surface mode are highly shape dependent even though the

particles are small compared with the wavelength.

The resonance is associated with the vanishing of the denominators of

the Mie scattering coefficients. In the limit x -- 0 (finite jmj), the

denominator of an vanishes if the following is satisfied (Bohren and Huffman,

1983, Sect 12.1):

2 n+1 (A.6)m2  ,n 1, 2,..
n

For sufficiently small spheres the dominant coefficient is a,; thus for n = 1 the

resonance condition is m2 = -2. With the refractive index of the medium close

to unity the complex dielectric function of the particle for which resonance

occurs is: E = E' + iE" = -2 + iO. The frequency at which E, = -2 and

E- = 0 is called the Fr6hlich frequency; the corresponding normal mode is

known as a Fr6hlich mode. Notice also from equation (1) that when C. = 1,

Edip = -2 at the Fr6hlich frequency. Thus according to the CM relation--either

equation A.1 or A.3--the polarizability at a Fr6hlich mode is infinite. It is

under this condition we now test Doyle's expression for determining the

polarizability.

An example of a Fr6hlich mode appears in the infrared for quartz

particles. The optical constants of quartz (Figure A.4) were determined by

using the Lorentz oscillator model and published dispersion parameters
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Figure A.4 Complex refractive index and dielectric function as a function of
wavenumber (cm-') for quartz as obtained from the Lorentz
oscillator model: upper curves are the refractive index,
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(Spitzer and Kleinman, 1961). As in Huffman and Bohren (1980) we used the

so-called 1/3-% rule to treat the anisotropy of quartz. c, attains the value of -2

three times--at 1153, 1165, and 1169 cm'-with attendant values of E" being

0.39, 1.1, and 0.49 cm-1, respectively. Although E" o 0 when E" = -2, E" is

sufficiently small to produce significant maxima in the extinction cross section,

and we will still refer to these as Fr6hlich modes. As seen in Figure A.4, the

imaginary part of the refractive index, which is the usual first-order indicator

of absorption, undergoes a slight inflection near 1160 cm-'; however, the

resonance band is more pronounced than this indicates. Having all the

necessary information to calculate the scattering parameters for quartz

particles, our next step was to compare the coupled-dipole method by using the

Doyle expression and the CM relation one last time.

Surface Modes for Spherical Particles

Replacing the CM relation with the Doyle expression to determine

polarizabilty in the coupled-dipole method leads to extinction values that

compare more closely with Mie theory. This was shown for several refractive

indices where surface modes are not excited. However, when the calculations

are made near the Frdhlich frequency, the CM relation does better than the

Doyle expression. The following model comparison shows why.

Extinction efficiency was calculated for quartz spheres at the 1153 cm-1

Fr6hlich frequency by using Mie theory and the coupled-dipole method. The

variable of interest in this exercise was particle radius, which ranged from

0.1 to 100 um when modeled by Mie theory. The coupled-dipole method was

run twice, first with the CM relation and then with the Doyle expression, for

each of nine spheres with radii ranging from 0.3 to 3.0 um. For perspective,

Mie theory was also used to calculate Q,,, for two other refractive indices.

The results are shown in Figure A.5. The small-particle resonance associated
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Figure A.5 Extinction efficiency as a function of particle radius (jm)
obtained from Mie theory and the coupled-dipole method. Mie
theory is represented by the continuous curves, each corresponds
to a separate complex refractive index: - for m = (0.1297,
il.444) (Fr6hlich mode); . for m = (133, i0.05); and ----
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o when using the Clausius-Mosotti relation and 0 when using
Doyle's expression; both are at the Fr6hlich mode.
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with the Fr6hlich frequency is manifest as the highest Qext in the radius range

from 3.0/um and smaller. At larger radii (> 3.0,um), the small-particle

resonance diminishes and becomes obscured by the bulk properties of the

sphere. In this size range, values of Qext for all three refractive indices

approach the value of 2. It is in the size range between 0.3 and 3.0,jm for

which the small-particle resonance is pronounced, and Q,,t obtained by using

the CM relation more closely agrees with Mie theory calculation than does the

Doyle expression.

It is observed that at radii of 0.3 and 3.0 Aim, the results from the

coupled-dipole method with the CM relation or the Doyle expression are in

agreement. It has been stated earlier that for small particles the Doyle

expression reduces to the CM relation, which is why the two coupled-dipole

method values agree at 0.3 Im: both schemes yield identical polarizabilities.

For particles larger than 3.0 urm the bulk extinction features become more

important than the small-particle resonance. At these larger particle sizes the

CM relation and the Doyle expression give different values for polarizability,

but the calculated extinction efficiencies are nearly identical. (Larger spheres

could not be run with the coupled-dipole method because of computer

limitations.) Thus the discrepancy between the CM relation and the Doyle

expression lies in the radius range from 0.3 to 3.0 ym and appears to be due to

the small-particle resonance. This is not unexpected because the Doyle

expression contains higher order terms of the size parameter that would have

their greatest effect at limiting the resonance in this size range (according to

the CM relation, polarizability is infinite at a true Fr6hlich frequency, but it is

not infinite by the Doyle expression). Consequently the larger polarizability

from the CM relation leads to a higher Qet as seen between 0.3 and 3.0 jzm.

It may not be possible for the coupled-dipole method to duplicate the

resonance peak of Mie theory at the Fr6hlich frequency because the dipolar

array cannot exactly represent a sphere. (More will be said about this below.)
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The result will be a lower resonance peak. Using the CM relation in place of

the Doyle expression yields a higher polarizability at a Fr6hlich frequency, so

we obtain a higher resonance peak. Thus conflicting inadequacies in the

model permit the CM relation to produce extinction values at the Fr6hlich

frequency that more closely agree with Mie theory than does the Doyle

expression.

For subsequent modeling the Doyle expression will be used. We feel

that the elimination of the artificially high polarizability obtained with the CM

relation near a Fr6hlich mode should be avoided despite the fact that the CM

relation agrees better with Mie theory. Replication of Mie theory is a goal

when modeling spheres; however, in reality one might rather model a so-called

near-sphere since spheres are more an anomaly in nature than modeling

practices admit. We now examine extinction by quartz particles.

The extinction cross section per unit volume C,,t/v for a spherical

quartz particle of radius 0.5 Am was calculated from wavenumber 1000 to

1300 cm' by using the optical constants shown in Figure A.4. For the coupled-

dipole method, an array of 136 dipolar subunits was used to represent the

sphere. The results appear in Figure A.6. Two major peaks appear in the Mie

theory results that correspond to the Fr6hlich frequencies--one peak is at 1153

cm'1 and the second is between 1165 and 1169 cm "1. The coupled-dipole

method also predicts extinction peaks near these frequencies; however, the

peaks are not as high as those computed by Mie theory, and at 1153 cm' the

extinction peak is shifted toward lower frequency and has a broader base.

Both issues will be addressed; first is the extinction magnitude.

It was stated earlier that the resonance at a Fr6hlich frequency is highly

shape dependent. How well can a collection of dipoles on a cubic lattice

represent a sphere at this frequency? Draine (1988) presented a criterion for

estimating the sphericity of a dipolar array. By comparing the radius of

gyration of an array of dipolar subunits with a sphere of equal volume, one
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Figure A.6 Extinction cross section per unit volume (1um1 ) as a function of
wavenumber (cm*') for spheres as obtained from Mie theory
(-) and from the coupled-dipole method using the Doyle
expression ( . ). Peaks correspond to the Fr6hlich frequency
for quartz.
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can pick out a few values for N that best approximate a sphere. We adopted

Draine's notation of [f(N)] as the ratio of the radius of gyration of the dipolar

array to that of a sphere. Thus as a measure of sphericity: [f(N)]r = 1 for a

perfect sphere. Draine contended that surface granularity, which is inversely

proportional to the particle's sphericity, leads to numerical inaccuracies

especially when the refractive index is large. We will investigate whether

surface irregularity is the reason the coupled-dipole method cannot duplicate

the peak extinction obtained from Mie theory at the Fr6hlich frequency. If

this were the case, the extinction cross section could be affected by small

changes in the sphericity of a dipolar array.

Using the radius of gyration criterion, Draine considered the 136- and

160-dipole arrays to be good representations of spheres. (He also considered

several larger arrays to be good representations, but the version of the

coupled-dipole used here is limited to 300 dipolar subunits.) These dipole

arrays have radii of 3.0 du and 3.5 du; however, the central dipoles of the

arrays are displaced from the origin by 0.5 du. With the central dipole located

at the origin, additional spherical approximations are obtained, for example:

123- and 179-dipole arrays (radii are 3.0 and 3.5 du). The sphericity of seven

arrays was computed with the radius of gyration criterion and is listed in

Table A.2. Note that the 136-, 160-, and 251-dipolar arrays have radii of

gyration closer to unity than the remaining four arrays which implies that of

the seven they best represent a spherical particle.

To determine if small changes in sphericity affects extinction near the

1153 cm 1 Fr6hlich frequency, we eliminated the size difference of the seven

arrays. The radii of the dipolar subunits of the seven arrays were adjusted so

that the entire array represented a sphere with an effective radius a, of 0.5 um.

Cext/v was then calculated for the seven arrays; the values are reported in

Table A.2. At non-surface modes Cxt/v for spheres is unaffected by these

variations in N (when a, is held constant), but as seen in Table A.2 extinction
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Table A.2. Comparison of Cent/v among seven dipolar arrays; all
represent a spherical particle of radius 0.5 um. Columns
represent number of dipoles, radius of gyration, and
maximum value of CX,/v near the 1153 cm-' Fr6hlich
frequency as calculated by the coupled-dipole method.
Rows are in order of decreasing sphericity as determined
by Draine's criterion. The corresponding C,,/v calculated
by Mie theory is 17.1 mun'.

N [f(N)]" C'./v
251 1.0015 14.40

136 1.0017 13.61

160 1.0021 14.94
179 1.0039 10.93

208 1.0069 11.58

147 1.0078 9.44

123 1.0112 10.12
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values differ greatly at a Fr6hlich mode. The three arrays that are the best

representations of spheres according to Draine's criterion also have the highest

values for extinction. This is not meant to be a definitive statement but it

appears that extinction is dependent on how well the dipolar array represents a

sphere. Unfortunately, larger arrays cannot be modeled with the matrix

inversion method. The scattering order version can be used for arrays that

contain greater than 1000 dipolar subunits, but that solution method diverges

when the polarizability is too high (Singham and Bohren, 1988).

A corollary of this is that bigger arrays may not always be better: a

sphere should not necessarily be represented by the largest array possible. For

example, Table A.2 implies that the array that contains 136 dipolar subunits

represents a sphere better than does the 208-unit array. This assertion is not

conclusive, and needs further research.

Although sphericity of the dipolar array affects C,jv, it does not

explain why values are lower than Mie theory by as much as 20%. This

discrepancy of maximum calculated extinction may be inherent in the

formulation of the coupled-dipole method. The coupled-dipole method is able

to match the extinction computed by Mie theory at the Fr6hlich frequency, but

only when the dipolar subunits do not communicate their scattered fields to

their neighbors. When the interactions between the subunits have been turned

off, they scatter as individual spheres and the calculated Ce,jv becomes

identical to that given by Mie theory. When the interactions are included, the

values of Ceit/v decrease to what was shown in Table A.2. Thus the coupling

of the dipoles appears to be the limiting factor: an array of dipolar subunits

on a cubic lattice does not adequately represent a sphere when the shape

dependence is as crucial as at a Fr6hlich mode. We now will investigate the

broadening of the extinction band shown in Figure A.6.
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Shape Effects on Surface Modes

Mie theory predicts strong resonance peaks at Fr6hlich frequencies for

quartz crystals in the Rayleigh regime. The coupled-dipole method also shows

extinction maxima at these frequencies as noted above; however, the height

and width of the coupled-dipole extinction curve is different from that

obtained with Mie theory. The reduction in height was explained by the

inability of a finite array of dipolar subunits to represent a sphere. The

widening of the extinction band may be explained in a similar fashion.

Resonance features are not limited to spheres. Whereas Mie theory is

applicable only to spheres, the coupled-dipole method may be used to calculate

extinction for any particle shape. To investigate nonspherical resonances near

the Fr6hlich frequency, we modeled the following shapes by using the coupled-

dipole method: a 2 x 1 and a 4 x 1 oblate spheroid and a 2 x 1 and a 4 x 1 prolate

spheroid comprised of 152, 136, 138, and 136 dipolar subunits, respectively.

The spheroids were modeled with an equivalent radius of 0.5 um as was done

when modeling the 136-dipolar subunit sphere in the previous section. To

simulate random orientation of the particles for comparison with measured

data each spheroid was rotated in over 100 alignments. (The spheres in the

previous section were also rotated but little effect on Q,,t was noted.)

Values of Cet/v for the four spheroids and the 136-unit sphere are

shown in Figure A.7. Near the Fr6hlich frequencies, the spherical array

exhibits the highest Cet/v. Near wavenumber 1125 cm', a larger value for

extinction is calculated for both oblate spheroids and the 2 x 1 prolate spheroid

than for the sphere suggesting the presence of a nonspherical resonance.

Recalling Figure A.6, C,,t/v for the 136-dipole sphere was larger at 1125 cm 1

than that computed by Mie theory. Since the 136-dipole sphere was shown

earlier to be slightly nonspherical, this nonspherical resonance could account

for this larger extinction for the 136-dipole sphere. The proximity of the
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Figure A.7 Pictorial representation of small-particle extinction for quartz.
Extinction cross section per unit volume (,um-1) calculated by the
coupled-dipole (Doyle expression) as a function of wavenumber
(cm-'). Five shapes are represented: 0 symbolizes a sphere, 1I a
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oblate spheroid, and - a 4 x 1 oblate spheroid.
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nonspherical resonance to the Fr6hlich frequency of 1153 cm' thus widens the

extinction band of the 136-dipole sphere towards lower wavenumbers as seen

in Figure A.6. A similar broadening does not occur towards higher

wavenumbers because, as can be seen from Figure A.7, the nonspherical

resonances at 1200 cm1 are weaker than those at 1125 cm l .

The results from modeling the sphere and spheroids with the coupled-

dipole method are now compared with another theoretical method--the method

of continuous distribution of ellipsoids CDE (Huffman and Bohren, 1980).

This method is used to compute the absorption cross section per unit volume

CabJv by integrating over a distribution of shape parameters in the Rayleigh-

ellipsoid approximation. The CDE expression is simplified when all shapes

within the ellipsoid distribution are equally probable:

Cabs k (A.7)

For comparison with the coupled-dipole results, extinction is taken to be nearly

equal to absorption. This is not a bad assumption since the particles are small

compared with the wavelength, and in the vicinity of the Fr6hlich modes

calculations from the coupled-dipole method show that the scattering cross

section is approximately an order of magnitude smaller than the absorption

cross section. To duplicate the equally-probable spheroid distribution used in

the CDE method, we merely averaged the Cext/v values from the coupled-

dipole method for the sphere and spheroids. The modeling results are shown

in Figure A.8. The agreement is good considering the CDE method represents

a continuous distribution of spheroids and the coupled-dipole method only five

arrays (four spheroids and a sphere). In turn, extinction measurements for

submicron quartz crystals have been shown to be well predicted by the CDE

method (Huffman and Bohren, 1980). Thus by the transitive property, this

exercise has given credence to the ability of the coupled-dipole method
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Figure A.8 Extinction cross section per unit volume (,Um "') as a function of
wavenumber (cm") obtained from the Continuous Distribution of
Ellipsoids method (-) and the coupled-dipole method (Doyle
expression) using five spheroids (0): sphere, 2 x 1 and 4 x 1 oblate
and prolate spheroids.
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with the Doyle expression to treat extinction by nonspherical particles near a

Fr6hlich frequency.

As pointed out by a reviewer the coupled-dipole method may be

overkill when comparing it with calculations based on electrostatics. However,

because retardation is accounted for, the coupled-dipole method could

(perhaps should) be used to investigate particles with larger size parameters

near a Fr6hlich mode whereas the CDE method could not. The purpose of

this exercise was to introduce the Doyle expression. As for comparing the

coupled-dipole method with an exact method such as the T-matrix, Goedecke

and O'Brien (1988) have already shown agreement between the two, and,

because of the size parameters of the spheroid as particles that we modeled,

the use of the T-matrix for this study is unwarranted.

Conclusions

The coupled-dipole method relies on an effective-medium theory to

provide the polarizability of the dipolar subunits. The CM relation is widely

used in the coupled-dipole method, but because of the size of the dipolar

subunits, it is has an insufficient number of terms to account appropriately for

the electric dipole polarizability. Doyle (1989) used the electric dipole term

from Mie theory to obtain an exact expression for polarizability that afforded

improved calculations of optical properties of a suspension of metal spheres.

Incorporating Doyle's expression in the coupled-dipole method in place of the

CM relation yielded improved extinction calculations at nonresonance

frequencies.

Doyle's expression was further tested by calculating extinction by quartz

particles near a Fr6hlich mode. The small-particle absorption associated with

this mode is highly shape dependent. Mie theory and the coupled-dipole

method were compared by calculating the extinction by spherical particles;
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differences were noted and examined. First, the peak extinction calculated by

the coupled-dipole method was much lower than that obtained from Mie

theory. This is because the shape dependency at the Fr6hlich frequency is so

critical that a spherical array of dipoles fails to represent a perfect sphere.

Second, results from the coupled-dipole method indicated a wider absorption

band than obtained from Mie theory. Further modeling with the coupled-

dipole method indicated the broadening arises from nonspherical particle

resonances. The calculated extinction by these nonspherical particles agrees

with the results of another theoretical method, the CDE method, which in turn

has been shown to agree with measured data (Huffman and Bohren, 1980).
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Appendix B

SUBROUTINES FOR BUILDING DIPOLAR ARRAYS

This appendix contains source listings of the subroutines described in
Chapter 4. The subroutines are used to build arrays which represent particles of
several different shapes.
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SUBROUTINE SPHERE (RAD,REALRAD,OFFSET,X,Y,Z,ITOT,RADEFF)
C
C THIS SUBROUTINE BUILDS A SPHERE OF DIPOLAR SUBUNITS.
C

C INPUT: RAD IS THE NUMBER OF DIPOLAR SUBUNITS IN THE RADIUS OF

C THE SPHERE; REALRAD IS THE RADIUS OF THE--IT IS USED TO ADJUST

C THE SIZE OF THE DIPOLAR SUBUNITS; OFFSET - 0.0 IF ORIGIN IS

C LOCATED WITH THE CENTRAL DIPOLE, OTHERWISE - 0.5.
C
C OUTPUT: ARRAYS X, Y, AND Z GIVE THE COORDINATES OF THE DIPOLAR

C SUBUNITS; ITOT IS THE NUMBER OF DIPOLES IN THE ARRAY; RADEFF IS

C THE EFFECTIVE RADIUS OF THE SPHERE
C

DIMENSION X( * ), Y( * ), Z( * )
OFFSET = 0.0

ITOT = 0
RAD2 RAD*RAD
ISIZE = IFIX(RAD+1.0)

C
DO 30 JZ = -ISIZE,ISIZE,I
ZJZ - FLOAT(JZ) + OFFSET

DO 20 JY - -ISIZE,ISIZE,I
YJY - FLOAT(JY) + OFFSET
DO 10 JX - -ISIZE,ISIZE,I

XJX = FLOAT(JX) + OFFSET

C
C DETERMINE IF THIS LATTICE POSITION FALLS WITHIN SPHERE'S RADIUS

C
R = 1.0 * (XJX**2 + YJY**2 + ZJZ**2)

IF (R.GT.RAD2) GO TO 10

C
ITOT = ITOT + 1
X(ITOT) = 1.0 * XJX

Y(ITOT) = 1.0 * YJY
Z(ITOT) = 1.0 * ZJZ

10 CONTINUE
20 CONTINUE
30 CONTINUE
C

C RADEFF = ((3*ITOT)/(4*PI))**(1/3) IN DIPOLE UNITS

RADEFF = (0.238732415 * ITOT)**(1./3.)

RAD = RADEFF
IF (REALRAD.NE.O.0) RAD = REALRAD

C

RETURN
END
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SUBROUTINE SPHROID (AAA,BBB,REALRAD,X,Y,Z,ITOT,RADEFF)

C
C THIS SUBROUTINE BUILDS AN SPHEROID OF DIPOLAR SUBUNITS.

C

C INPUT: AAA AND BBB ARE THE DIMENSIONS OF THE MAJOR AND MINOR AXES;

C REALRAD IS THE RADIUS OF THE EQUIVALENT-VOLUME SPHERE. OFFSET IS

C SET AUTOMATICALLY. CIRCULAR CROSS SECTION IS ORIENTED IN Y-Z

C PLANE. OUTPUT: ARRAYS X, Y, AND Z GIVE THE COORDINATES OF THE

C DIPOLAR SUBUNITS; ITOT IS THE NUMBER OF DIPOLES IN THE ARRAY;

C RADEFF IS THE EFFECTIVE RADIUS OF THE EQUIVALENT-VOLUME SPHERE.

C
DIMENSION X( * ), Y( * ), Z( * )

C
IAA = IFIX(AAA - 1.0)

IBB - IFIX(BBB - 1.0)
DIAA = AAA/2.
DIAC - BBB/2.

ITOT - 0
C

DO 30 JX - -IBB,IBB,2

XJX - FLOAT(JX)/2.
DO 20 JY - -IAA,IAA,2

YJY - FLOAT(JY)/2.
DO 10 JZ - -IAA,IAA,2
ZJZ = FLOAT(JZ)/2.

C
C DETERMINE IF THIS LATTICE POSITION FALLS WITHIN RADIUS

RAD = ((ZJZ/DIAA)**2 + (YJY/DIAA)**2 + (XJX/DIAC)**2)

IF (RAD.GT.I.0) GO TO 10

C
ITOT - ITOT + 1

X(ITOT) - 1.0 * XJX

Y(ITOT) = 1.0 * YJY
Z(ITOT) = 1.0 * ZJZ

10 CONTINUE
20 CONTINUE
30 CONTINUE

C
C RADEFF = ((3*ITOT)/(4*PI))**(1/3)

RADEFF = (0.238732415*ITOT)**(1./3.)

C
RAD = REALRAD
IF (REALRAD.NE.0.0) RAD = REALRAD

C
RETURN
END
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SUBROUTINE RECTSLD (AAA,BBB,CCC,REALRAD,X,Y,Z,ITOT,RADEFF)

C

C THIS SUBROUTINE BUILDS A RECTANGULAR SOLID OF DIPOLAR SUBUNITS.
C

C INPUT: AAA, BBB, CCC ARE THE X, Y, Z, DIMENSIONS; REALRAD IS THE

C RADIUS OF THE EQUIVALENT-VOLUME SPHERE.

C

C OUTPUT: ARRAYS X, Y, AND Z GIVE THE COORDINATE OF THE DIPOLAR

C SUBUNITS; ITOT IS THE NUMBER OF DIPOLES IN THE ARRAY; RADEFF

C IS THE EFFECTIVE RADIUS OF THE EQUIVALENT-VOLUME SPHERE.

C
DIMENSION X( * ), Y( * ), Z( * )

C

ITOT = 0
IAA = IFIX(AAA - 1.0)

IBB = IFIX(BBB - 1.0)
ICC IFIX(CCC - 1.0)

C
DO 30 JZ - -ICC,ICC,2

DO 20 JY - -IBB,IBB,2
DO 10 JX - -IAA,IAA,2

ITOT - ITOT + 1
Z(ITOT) - FLOAT(JZ)/2.

Y(ITOT) - FLOAT(JY)/2.
X(ITOT) = FLOAT(JX)/2.

10 CONTINUE
20 CONTINUE
30 CONTINUE
C
C RADEFF = ((3*ITOT)/(4*PI))**(1/3)

RADEFF = (0.238732415 * ITOT)**(1./3.)
C

RAD = REALRAD
IF (REALRAD.NE.O.0) RAD = REALRAD

C
C RETURN

END
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SUBROUTINE CYLNDER (RAD,HGHT,REALRAD,OFFSET,X,YZ, ITOT,RADEFF)

C
C THIS SUBROUTINE BUILDS A CYLINDER OF DIPOLAR SUBUNITS.

C
C INPUT: RAD IS THE NUMBER OF DIPOLAR SUBUNITS IN THE RADIUS OF THE
C CROSS SECTION; HGHT IS THE LENGTH OF THE CYLINDER; REALRAD IS THE
C RADIUS OF THE EQUIVALENT-AREA CIRCLE OF THE CROSS SECTION;

C OFFSET - 0.0 IF THE CENTRAL DIPOLES ARE LOCATED ON THE X AXIS,
C OTHERWISE =0.5. CYLINDER IS ORIENTED ALONG X AXIS.

C
C OUTPUT: ARRAYS X, Y, AND Z GIVE THE COORDINATES OF THE DIPOLAR
C SUBUNITS; ITOT IS THE NUMBER OF DIPOLES IN THE ARRAY; RADEFF IS
C THE EFFECTIVE RADIUS OF THE EQUIVALENT-AREA CIRCLE OF CROSS
C SECTION.
C

DIMENSION X( * ), Y( * ), Z( * )
ITOT - 0
RAD2 - RAD * RAD
ISIZE = IFIX(RAD + 1.0)

LSIZE - IFIX(HGHT - 1.0)
C

DO 30 JY - -ISIZE,ISIZE,I
YJY - FLOAT(JY) + OFFSET
DO 20 JZ - -ISIZE,ISIZE,I

ZJZ - FLOAT(JZ) + OFFSET

R = (YJY**2 + ZJZ**2)
IF (R.GT.RAD2) GO TO 20
DO 10 JX = -LSIZE,LSIZE,2

ITOT = ITOT + 1
Z(ITOT) = ZJZ
Y(ITOT) - YJY
X(ITOT) = FLOAT(JX)/2.

10 CONTINUE
20 CONTINUE
30 CONTINUE

C
C RADEFF=(ITOT/(HGHT*PI))**1/2 OF THE CYLINDER'S RADIUS

RADEFF = (ITOT/(HGHT * 3.141592654))**.5
C
C RAD = RADEFF

IF (REALRAD.NE.0.0) RAD = REALRAD
C

RETURN
END
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SUBROUTINE FCC (RAD,REALRAD,OFFSET,X,Y,Z,ITOT,RADEFF)
C
C THIS SUBROUTINE BUILDS A SPHERE OF DIPOLAR SUBUNITS ON A FACE-
C CENTERED CUBIC LATTICE RATHER THAN SIMPLE CUBIC LATTICE.
C
C INPUT: RAD IS THE NUMBER OF DIPOLOAR SUBUNITS IN THE RADIUS OF
C THE SPHERE; REALRAD IS THE RADIUS OF THE SPHERE; OFFSET = 0.0

C IF THE ORIGIN IS LOCAfED WITH THE CENTRAL DIPOLE, OTHERWISE = 0.5.
C
C OUTPUT: ARRAYS X, Y, AND Z GIVE THE COORDINATES OF THE DIPOLAR

C SUBUNITS; ITOT IS THE NUMBER OF DIPOLES IN THE ARRAY; RADEFF IS
C THE EFFECTIVE RADIUS OF THE SPHERE.
C

DIMENSION X( * ), Y( * ), Z( * )
ITOT - 0
ROOT2 - SQRT(2.)
FACE - ROOT2 * 0.5
RAD2 RAD * RAD
ISIZE = IFIX(RAD + 2.0)

C
DO 50 JZ = -ISIZE,ISIZE,I
DO 40 JY = -ISIZE,ISIZE,I

DO 30 JX = -ISIZE,ISIZE,I
XJX - ROOT2 * FLOAT(JX) + OFFSET
YJY - ROOT2 * FLOAT(JY) + OFFSET
ZJZ - ROOT2 * FLOAT(JZ) + OFFSET
DO 20 1 - 1,4

R = 1.0 * (XJX**2 + YJY**2 + ZJZ**2)
IF (R.GT.RAD2) GO TO 10
ITOT = ITOT + 1
X(ITOT) = 1.0 * XJX
Y(ITOT) = 1.0 * YJY
Z(ITOT) - 1.0 * ZJZ

10 IF (I.EQ.1) THEN
XJX - XJX - FACE
YJY = YJY - FACE

ELSE IF (I.EQ.2) THEN
XJX - XJX + FACE
ZJZ = ZJZ - FACE

ELSE
XJX - XJX - FACE
YJY = YJY + FACE

END IF
20 CONTINUE
30 CONTINUE
40 CONTINUE
50 CONTINUE

C
C RADEFF = ((3*ITOT)/(4*PI))**(1/3)

RADEFF = (0.238732415 * ITOT/ROOT2)**(1./3.)
C

RAD = RADEFF
IF (REALRAD.NE.O.0) RAD - REALRAD

C
RETURN
END
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SUBROUTINE HEX (AAA,BBB,REALRAD,X,Y,Z,ITOT,RADEFF)
C

C THIS SUBROUTINE BUILDS A HEXAGON SOLID OF DIPOLAR SUBUNITS.
C
C INPUT: THE PARTICLE IS ALIGNED ALONG THE X AXIS WITH TWO OF THE
C VERTICES LYING IN THE X-Z PLANE. AAA IS THE NUMBER OF DIPOLES

C IN THE WIDTH (Y DIRECTION); BBB IS THE NIMBER OF DIPOLES IN THE
C LENGTH (X DIRECTION); REALRAD IS THE RADIUS OF THE EQUIVALENT-

C AREA CIRCLE REPRESENTED BY THE CROSS SECTION OF THE PARTICLE.

C
C OUTPUT: ARRAYS X, Y, AND Z GIVE THE COORDINATES OF THE DIPOLAR

C SUBUNITS; ITOT IS THE NUMBER OF DIPOLES IN THE ARRAY; RADEFF

C IS THE EFFECTIVE RADIUS OF THE CROSS SECTION.

C
DIMENSION X(*),Y(*),Z(*)

ITOT = 0
IAA = IFIX(AAA - 1.0)
IBB = IFIX(BBB - 1.0)

C
C DETERMINE Z DISTANCE WHICH BEST APPROXIMATES EQUAL LENGTH FACES

C
ICC - NINT(SQRT(2.) * ((AAA-1.)/2.))

C
DO 30 JX=-IBB,IBB,2

C
C BUILD THE CENTER SQUARE/RECTANGLE

C
IND = 0
DO 20 JY = -IAA,IAA,2

DO 10 JZ = -ICC,ICC,2
ITOT = ITOT + 1
Z(ITOT) = FLOAT(JZ)/2.
Y(ITOT) = FLOAT(JY)/2.
X(ITOT) = FLOAT(JX)/2.

10 CONTINUE
20 CONTINUE
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C
C BUILD THE UPPER AND LOWER TRIANGLES
C DETERMINE HOW MANY LINES OF DIPOLES (NOL) TO ADD:
C

NOL - IFIX(AAA/2.)
DO 40 1 = 1,NOL

C
C START BUILDING NEW LINES REMEMBERING TO INDENT ONE EACH TIME
C

IND - IND + 2
JZ = ICC + IND
DO 50 JY = -IAA+IND,IAA-IND,2

ITOT - ITOT + 1
Z(ITOT) - FLOAT(JZ)/2.
Y(ITOT) - FLOAT(JY)/2.
X(ITOT) - FLOAT(JX)/2.
ITOT - ITOT + 1
Z(ITOT) - FLOAT(JZ)/(-2.)

Y(ITOT) - FLOAT(JY)/2.
X(ITOT)=FLOAT(JX)/2.

50 CONTINUE
40 CONTINUE
30 CONTINUE

C
C RADEFF=(ITOT/(BBB*PI))**1/2 OF THE CYLINDER'S RADIUS

RADEFF = (ITOT/(BBB*3.141592654))**.5
C

RAD = RADEFF
IF (REALRAD.NE.O.0) RAD = REALRAD

C
RETURN
END
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